Асинхронный двигатель с фазным ротором схема торможения - Авто мастер
Avtonova37.ru

Авто мастер
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронный двигатель с фазным ротором схема торможения

Как работает динамическое торможение двигателя с фазным ротором

Торможение хода трёхфазных асинхронных двигателей. Какие системы и методы используются для электрического торможения? Какова суть процессов?

  1. Трёхфазные асинхронные двигатели: методы торможения хода
  2. Асинхронный двигатель и его работа
  3. Графический метод расчета пусковых реостатов
  4. Что такое динамическое торможение?
  5. Варианты построения электрических тормозов
  6. Основные виды динамического торможения
  7. Электрические схемы
  8. Спецификация оборудования фирмы (Германия)
  9. Описание и свойства прямого пуска асинхронного электродвигателя
  10. Классическое динамическое торможение
  11. Рекуперативное торможение
  12. Торможение противовключением

Асинхронный двигатель и его работа


Очевидно, что режимы функционирования электродвигателей асинхронного типа напрямую зависят от их конструкции и общих принципов работы. Этот силовой агрегат совмещает в себе два ключевых компонента:

  1. Неподвижный статор. Пластинчатый цилиндр, в продольные пазы на внутренней поверхности которого укладывается проволочная обмотка,
  2. Вращающийся ротор. Совмещенный с валом сердечник (магнитопровод), который содержит прутковую обмотку на внешней стороне.

За счет различных частот вращения статора и ротора между ними возникает ЭДС, которая приводит вал в движение. Стандартное значение этого параметра может достигать 3000 об/мин, что требует определенного усилия для ее остановки. Из логических соображений можно заключить, что раз стартует двигатель за счет ЭДС, то и останавливать его тоже нужно электродинамическим путем.

Торможение противовключением

Торможение противовключением применяется для быстрой остановки двигателя. Оно может быть осуществлено несколькими способами. В первом способе, в работающем двигателе, меняют две фазы местами, с помощью выключения контактора K1 и включения K2. При этом направление вращения магнитного поля статора меняется на противоположное. Возникает большой тормозной момент, и двигатель быстро останавливается. Но для того чтобы ограничить большие токи в момент увеличения тормозного момента, необходимо вводить в обмотку статора или ротора дополнительное сопротивление.

Во втором способе двигатель используют как тормоз для груза. То есть, если груз спускается вниз, то двигатель должен работать, наоборот, на подъем. Для этого в цепь ротора двигателя вводится большое добавочное сопротивление. Но его пусковой момент оказывается меньше чем момент нагрузки, и двигатель работает при некоторой небольшой скорости, тем самым обеспечивая плавный спуск.

Управление электроприводами с асинхронными электродвигателями с фазным ротором

Схема управления в функции времени
(рис. 10). Эта схема является типичной для двигателей длительного режима с использованием маятниковых реле времени. При нажатии кнопки «
Пуск
» включается контактор
Л
. При включении контактора
Л
начинает работать маятниковое реле, которое через заданный промежуток времени включит своими контактами контактор

. Далее процесс повторяется. Замыкающий блок-контакт
Л
(1—2) предназначен для облегчения работы контактов маятникового реле.

Схема управления в функции времени с несколькими реле времени

Рис. 10. Схема управления асинхронным электродвигателем с фазным ротором в функции времени

Асинхронный электродвигатель с фазным ротором пускают с помощью пусковых реостатов, состоящих из нескольких ступеней, включаемых в фазы обмоток ротора.

При нажатии на кнопку «Пуск

» катушка магнитного пускателя
ПМ
получает питание, и электродвигатель включается на полное сопротивление пускового реостата. Одновременно включается реле времени
1РВ
, которое через выдержку времени, достаточную для разгона двигателя на этой ступени, включает контактор

, и он своими контактами закорачивает первую ступень пускового реостата. Блок-контакты контактора блокируют катушку

и отключают реле времени
1РВ
.

Включается одновременно с катушкой

реле времени
2РВ,
которое через заданную выдержку времени включает второй контактор

, а он отключает вторую ступень пускового реостата. Третья ступень пускового реостата отключается аналогично.

Необходимо обеспечивать выбор правильных выдержек времени реле 1РВ, 2РВ

и
3РВ
. Чрезмерно большие выдержки времени затягивают процесс пуска, а заниженные — не обеспечивают разгон до нужной скорости и вызывают повышенные броски тока. При нажатии на кнопку «
Стоп
» электродвигатель отключается, и все ступени пускового реостата включаются по фазам ротора.

Схема управления в функции тока

(рис. 12). В роторную цепь включены катушки токовых реле ускорения
1РУ, 2РУ, 3РУ
, настроенные на срабатывание при токах
I1РУ, I2РУ, I3РУ
. Контактор

включается при спаде силы пускового тока в роторной цепи до значения, соответствующего уставке реле
1РУ
.

Рис. 11. Электрическая схема управления асинхронным электродвигателем с фазным ротором

При большей силе тока в цепи ротора размыкающий контакт 1РУ

будет разомкнут. Реле ускорения
2РУ
и
3РУ
, контакторы

и

работают так же. Из-за возможности вибраций размыкающих контактов реле ускорения
1РУ, 2РУ
и
3РУ
предусмотрено их шунтирование размыкающими блок-контактами
1У, 2У
и

. Реле блокировки
РБ
создает выдержку времени, пока сила тока в роторной цепи не достигнет значения, при котором сработает реле ускорения.

Схема управления в функции частоты

(рис. 13). Работа этой схемы обеспечивается с помощью частотных реле
1ЧР, 2ЧР
и
3ЧР
, катушки которых включены в цепь ротора. Магнитный поток реле создается совместным действием магнитодвижущих сил катушки и короткозамкнутого витка (гильзы). При пуске, т.е. при большой частоте переменного тока в роторе двигателя, размагничивающее действие тока, протекающего по витку, будет велико, и магнитный поток реле будет относительно мал. При уменьшении частоты тока в роторе магнитный поток реле возрастает, так как происходит уменьшение тока в короткозамкнутом витке. При каком-то определенном значении частоты якорь притягивается и замыкает контакты реле частоты (
1ЧР, 2ЧР
и
3ЧР
) в цепи контактора ускорения (
1У, 2У
и

). При оживлении током катушки контактора ускорения происходит шунтирование его контактами соответствующей ступени пускового сопротивления, включенного в цепь ротора. Частотные реле должны быть настроены на определенные частоты.

Рис. 12. Схема управления асинхронным электродвигателем с фазным ротором в функции силы тока

Рис. 13. Схема управления асинхронным электродвигателем с фазным ротором в функции частоты

Техническое обслуживание и ремонт асинхронного двигателя с фазным ротором

РубрикаПроизводство и технологии
Видконтрольная работа
Языкрусский
Дата добавления27.05.2013
Размер файла436,4 K
  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Техническое обслуживание и ремонт асинхронного двигателя с фазным ротором

асинхронный двигатель ротор неисправность

Асинхронные электрические двигатели бывают двух типов — модели с фазным или с короткозамкнутым ротором.

Читать еще:  Что делать если греется двигатель ваз 2112

Основными элементами, обеспечивающими работу асинхронного электродвигателя, являются статор и ротор. Ротором называется подвижный элемент асинхронного двигателя, выполненный в форме цилиндра. Фазный ротор отличает от короткозамкнутого присутствие в его конструкции специальной обмотки с выводом на контактные кольца. Он обладает отличными регулировочными свойствами, а также обеспечивает облегченную и более мощную процедуру пуска. Такой механизм способствует образованию большого начального вращающегося момента. Благодаря этой особенности электродвигатель с фазным ротором является оптимальной машиной энергообеспечения для подъемных устройств — лифтов, кранов, эскалаторов и т.д. Данная разновидность может использоваться в ответственных конструкциях благодаря своей повышенной надежности — она способна переносить кратковременные перегрузки и имеет постоянную скорость при изменениях интенсивности нагрузки. Двигатель с фазным ротором характеризуется меньшим пусковым током и может использоваться с автоматическими системами запуска.

При строительстве и оборудовании таких ответственных конструкций, как скважинные насосы в СПб и других городах выбирают эту разновидность асинхронного двигателя, поскольку модель с короткозамкнутым механизмом не справится с возложенными на нее функциями. Специалисты рекомендуют отдавать предпочтение фазным роторам при оборудовании двигателей конвейеров, подъемников, крановых конструкций, различных промышленных мельниц (угольных, цементных и т.д.), вентиляционных систем, а также технических средств, рассчитанным на длительное время непрерывной работы. Если есть необходимость в экономном расходе электроэнергии, лучше отдавать предпочтение моделям асинхронных двигателей с функцией энергосбережения.

Принцип действия асинхронных двигателей основан на двух явлениях: образовании рабочего вращающегося магнитного поля токами в обмотке статора и воздействии этого поля на токи, индуцированные в короткозамкнутых витках ротора.

По принципу возникновения вращающего момента электродвигатели можно разделить на гистерезисные и магнитоэлектрические. У двигателей первой группы вращающий момент создается в следствии гистерезиса при перемагничивании ротора. Данные двигатели не являются традиционными и не широко распространены в промышленности.

Наиболее распространены магнитоэлектрические двигатели, которые по типу потребляемой энергии подразделяется на две группы — на двигатели постоянного тока (коллекторные, безколекторные) и двигатели переменного тока (однофазные, двухфазные, трехфазные, многофазные), так же существуют универсальные двигатели, которые могут питаться обоими видами тока.

Асинхронный двигатель с фазным ротором применяют для привода таких машин и механизмов, которые пускаются в ход под нагрузкой. В подобных приводах двигатель должен развивать при пуске максимальный момент, что достигается с помощью пускового реостата

В двигателе с фазным ротором статор выполнен так же, как и в двигателе с короткозамкнутым ротором. На роторе же расположена трехфазная обмотка, состоящая из трех, шести, девяти и т.д. катушек (в зависимости от числа полюсов машины), сдвинутых одна относительно другой на 120° (в двухполюсной машине), 60° (в четырехполюсной) и т.д. Числа полюсов обмоток статора и ротора берутся одинаковыми.

Электрическая схема асинхронного двигателя с фазным ротором (а) и его условное графическое изображение (б): 1 — статор; 2 — ротор; 3 — контактные кольца со щетками; 4 — пусковой реостат

Основные конструктивные узлы асинхронного двигателя с фазным ротором: 1 — приспособление для подъема щеток; 2, 12 — подшипниковые щиты; 3 — щеткодержатели; 4 — траверса; 5 — обмотка статора; 6 — остов; 7 — сердечник статора; 8 — коробка с выводами; 9 — сердечник ротора; 10 — обмотка ротора; 11 — контактные кольца

Обмотку фазного ротора обычно соединяют «звездой». Концы ее присоединяют к трем контактным кольцам, к которым посредством щеток подключают трехфазный пусковой реостат, т.е. в каждую фазу ротора в момент пуска вводят дополнительное активное сопротивление.

Принцип работы асинхронной машины основан на использовании вращающегося магнитного поля. При подключении к сети трехфазной обмотки статора создается вращающееся магнитное поле, угловая скорость которого определяется частотой сети f и числом пар полюсов обмотки p, т.е.

Пересекая проводники обмотки статора и ротора, это поле индуктирует в обмотках ЭДС (согласно закону электромагнитной индукции). При замкнутой обмотке ротора ее ЭДС наводит в цепи ротора ток. В результате взаимодействия тока с результирующим магнитным полем создается электромагнитный момент. Если этот момент превышает момент сопротивления на валу двигателя, вал начинает вращаться и приводить в движение рабочий механизм. Обычно угловая скорость ротора щ2 не равна угловой скорости магнитного поля щ1, называемой синхронной. Отсюда и название двигателя асинхронный, т.е. несинхронный.

Работа асинхронной машины характеризуется скольжением s, которое представляет собой относительную разность угловых скоростей поля щ1 и ротора щ2: s=(щ1-щ2)/щ1

Значение и знак скольжения, зависящие от угловой скорости ротора относительно магнитного поля, определяют режим работы асинхронной машины. Так, в режиме идеального холостого хода ротор и магнитное поле вращаются с одинаковой частотой в одном направлении, скольжение s=0, ротор неподвижен относительно вращающегося магнитного пол, ЭДС в его обмотке не индуктируется, ток ротора и электромагнитный момент машины равны нулю. При пуске ротор в первый момент времени неподвижен: щ2=0, s=1. В общем случае скольжение в двигательном режиме изменяется от s=1 при пуске до s=0 в режиме идеального холостого хода.

При вращении ротора со скоростью щ2>щ1 в направлении вращения магнитного поля скольжение становится отрицательным. Машина переходит в генераторный режим и развивает тормозной момент. При вращении ротора в направлении, противоположном направлению вращения магнитного поли (s>1), асинхронная машина переходит в режим противовключения и также развивает тормозной момент. Таким образом, в зависимости от скольжения различают двигательный (s=1?0), генераторный (s=0?-?) режимы и режим противовключення (s=1?+?). Режимы генераторный и противовключения используют для торможения асинхронных двигателей.

Перед установкой двигателя на рабочую машину необходимо выполнить следующие подготовительные работы:

Очистить корпус двигателя от пыли. Тряпкой, смоченной в керосине или бензине, снять антикоррозийную смазку со свободного конца вала. Проверить крепёжные детали двигателя. Убедиться в свободном вращение ротора в обе стороны. Проверить наличие смазки в подшипниковых узлах. Измерить сопротивление изоляции между фазами и корпусом мегомметром на напряжение 500В. Если сопротивление изоляции окажется менее 0,5 Мом, обмотку двигателя необходимо подсушить.

Сушить обмотку можно токовым способом (с разборкой двигателя или без неё), в сушильном шкафу или лампами накаливания. Во время сушки температура обмоток не должна превышать 100 градусов по Цельсию. В процессе сушки токовым образом необходимо контролировать температуру обмотки.

Измерить температуру обмотки двигателя в любой части можно термопарой или термометром, шарик которого обёртывают алюминиевой фольгой, а наружную часть покрывают теплоизоляцией (войлоком, ватой и т.д.). Температура в пазовой части обмотки на 10 — 15 градусов выше, чем в лобовой.

Читать еще:  Вибрация двигателя на холостом ходу тойота витц

Температуру обмоток можно определить и по изменению её сопротивления (в Омах) в период нагрева. Сопротивление обмотки можно измерить вольтметром — амперметром или мостом постоянного тока.

Сушат обмотки до тех пор, пока, сопротивление изоляции не достигнет значения 0,5 Мом. Если сопротивление изоляции не поднимается до указанной величины (обмотка сильно отсырела), сушку продолжают.

Необходимо произвести установку двигателя на рабочую машину в соответствии с правилами монтажа и подключить к питающей сети. Если маркировки выводных концов нет, можно определить начала и концы фаз опытным путём. Для этой цели можно использовать два простых способа.

В первом случае, определив контрольной лампой или мегомметром начала и концы фаз, соединяют между собой два проводника различных фаз. На эти две последовательно соединенные фазы подают переменное напряжение. К третьей фазе подключают вольтметр или контрольную лампу. Если фазы подключены одноимёнными выводами, например «началами» или «концами», напряжение на третьей фазе будет отсутствовать. Подключённую ранее к вольтметру или лампочке фазу меняют местами с одной из двух последовательно соединённых фаз и аналогично маркируют третью фазу.

Во втором случае найденные концы фаз соединяют по три вместе и к полученным точкам подсоединяют миллиамперметр постоянного тока или прибор Ц-435, используя его как амперметр постоянного тока. Если при вращении ротора двигателя от руки стрелка прибора отклоняется, нужно поменять местами выводы одной из фаз. Если после переключения одной фазы стрелка будет отклоняться, следует восстановить первоначальное положение переключённой фазы и поменять местами выводы другой фазы. В одном из трёх вариантов отклонение стрелки прибора прекратится, этим указывая на то, что все фазы соединены одноимёнными выходами. Вращать ротор при переключении выводов фаз нужно в одну сторону.

В соответствии с Правилами технической эксплуатации в системе планово-предупредительных ремонтов электрооборудования предусмотрено два вида ремонтов: текущий и капитальный.

Текущий ремонт производится с периодичностью, установленной с учетом местных условий, для всех электродвигателей, находящихся в эксплуатации, в том числе в холодном или горячем резерве. В объем работ при текущем ремонте входят работы, приведенные в табл. 42. Текущий ремонт является основным видом профилактического ремонта, поддерживающим на заданном уровне безотказность и долговечность электродвигателей. Этот ремонт производят без демонтажа двигателя и без полной его разборки.

Капитальный ремонт. Периодичность капитальных ремонтов электродвигателей Правилами технической эксплуатации не устанавливается. Она определяется лицом, ответственным за электрохозяйство предприятия на основании оценок общей продолжительности работы электродвигателей и местных условий их эксплуатации.

Неисправности и способы устранения

1. Двигатель не запускается:

1.1 отсутствие напряжения сети

1.2 обрыв подводящих проводов или одной из фаз обмотки статора

1.3 неправильное соединение фаз на клемном щитке

1. проверить напряжение контрольной лампой или индикатором

1.2 проверить мегомметром или контрольной лампой

1.3 проверить, правильна ли маркировка выводных концов и схема их соединения

2. Пониженное напряжение питающей сети

2. проверить вольтметром напряжение сети

3. Перегрузка электродвигателя

3.проверить амперметром или токоизмерительными клещами нагрузку двигателя по току

4. Пониженное напряжение сети

4. вольтметром проверить напряжение сети

Размещено на Allbest.ru

Подобные документы

Возможные неисправности и способы устранения асинхронного двигателя с короткозамкнутым ротором. Охрана труда и экология конвертерного производства ЕВРАЗ НТМК. Технологическая карта ремонта и обслуживания асинхронного двигателя с короткозамкнутым ротором.

реферат [277,5 K], добавлен 05.02.2014

Выбор, расчёт размеров и параметров асинхронного двигателя с фазным ротором. Главные размеры асинхронной машины и их соотношения. Обмотка, паза и ярма статора. Параметры двигателя. Проверочный расчет магнитной цепи. Схема развёртки обмотки статора.

курсовая работа [361,2 K], добавлен 20.11.2013

Принцип работы схемы управления асинхронным двигателем с короткозамкнутым ротором с одного места включения. Реверсивное управление асинхронным двигателем с короткозамкнутым ротором с выдержкой времени. Включение асинхронного двигателя с фазным ротором.

контрольная работа [351,0 K], добавлен 17.11.2016

Проектирование трехфазного асинхронного электродвигателя с короткозамкнутым ротором. Выбор аналога двигателя, размеров, конфигурации, материала магнитной цепи. Определение коэффициента обмотки статора, механический расчет вала и подшипников качения.

курсовая работа [3,0 M], добавлен 29.06.2010

Конструктивная разработка и расчет трехфазного асинхронного двигателя с фазным ротором. Расчет статора, его обмотки и зубцовой зоны. Обмотка и зубцовая зона фазного ротора. Расчет магнитной цепи. Магнитное напряжение зазора. Намагничивающий ток двигателя.

курсовая работа [1,6 M], добавлен 14.06.2013

Особенности разработки асинхронного электродвигателя с короткозамкнутым ротором типа 4А160S4У3 на основе обобщённой машины. Расчет математической модели асинхронного двигателя в форме Коши 5. Адекватность модели прямого пуска асинхронного двигателя.

курсовая работа [362,0 K], добавлен 08.04.2010

Рабочие характеристики асинхронного двигателя, определение его размеров, выбор электромагнитных нагрузок. Расчет числа пар полюсов, мощности двигателя, сопротивлений обмоток ротора и статора, магнитной цепи. Механические и добавочные потери в стали.

курсовая работа [285,2 K], добавлен 26.11.2013

Комбинированный режим

Комбинированные тормозные режимы применяются в электрических машинах, если необходимо быстро остановить и зафиксировать механизм. Для этого используют механический блок торможения в комбинации с электрическим торможением. Комбинация может быть различной. Это может быть и электрическая схема с противовключением, динамическим и рекуперативным режимами.

Вот мы и рассмотрели основные способы и схемы торможения электродвигателей. Если возникнут вопросы, задавайте их в комментариях под статьей!

Механизмы подъема. Преобразователь частоты серии EI-9011 в частотно регулируемом приводе

Механизмы подъема груза с применением электропривода устанавливаются на всех грузоподъемных машинах. Их общая конструкция характерна не только для кранов и лифтов, но и для машин специального назначения, в которых направление вектора приложения силы от действия нагрузки может совпадать с направлением вращения ротора электродвигателя.

Самый простой вариант механизма — грузовая лебедка. Это машина для подъема грузов с помощью каната, навиваемого на барабан с зацепом в виде крюка.

Основная кинематическая схема механизма подъема

Электропривод механизма подъема

Самый распространенный электродвигатель для механизма подъема — это асинхронный электродвигатель с короткозамкнутым ротором. При простоте управления (прямой пуск) у него есть существенные недостатки:

  • большие пусковые токи,
  • большие динамические нагрузки при запуске.

Устранить их в какой-то мере позволяет применение электродвигателя с фазным ротором. Но появляется новый недостаток — громоздкое силовое коммутационное оборудование.

Наиболее высоких эксплуатационных показателей позволяет достичь применение частотно-регулируемого привода, а именно:

  • снизить пусковые токи до уровня номинального,
  • снизить динамические нагрузки до уровня расчетных,
  • плавно регулировать скорости вращения в широком диапазоне.
Читать еще:  Большие обороты двигателя на холостом ходу митсубиси

Применение ПЧ серии EI-9011 для управления механизмом подъема

При выборе преобразователя частоты «Веспер» прежде всего надо учитывать тип редуктора механизма подъема. Различают 2 основных типа:

  • цилиндрический,
  • червячный.

Различие этих редукторов в том, что цилиндрический — двухсторонний, т. е. крутящий момент передается как от входного вала к выходному, так и наоборот — от выходного вала к входному; а червячный — односторонний. Последний устанавливают реже — из-за низкого КПД и повышенного износа.

В механизмах подъема с червячным редуктором возможно применение любого преобразователя частоты «Веспер» серий EI, E3, E4, E5. Но применение ЧРП в таком механизме мы рассматривать не будем — из-за отсутствия особенностей его работы.

Для механизмов подъема с цилиндрическими редукторами рекомендуется применять преобразователи частоты серии EI-9011, благодаря наличию у них:

  1. Мощного центрального процессора, который позволяет создать программное обеспечение для векторного режима с высокими точностными характеристиками и широким функционалом.
  2. Двух векторных режимов: в разомкнутой системе и с датчиком обратной связи по скорости.
  3. Широкого диапазона регулировки скорости: 1/100 в обычном векторном режиме и 1/1000 — в векторном с обратной связью.
  4. Векторного режима с обратной связью, который обеспечивает М=100% практически при нулевой скорости вращения двигателя.

Ранее приведенная кинематическая схема механизма подъема оптимальна для управления от преобразователя частоты EI-9011. В составе механизма есть тормозное устройство (3), конструктивно не связанное ни с электродвигателем, ни с редуктором. Для него доступно независимое управление электрическим сигналом.

С преобразователем частоты структура будет иметь следующий вид:

Рассмотрим простейшую схему управления приводом грузовой лебедки с электродвигателем небольшой мощности — до 8 кВт:

Для такого применения достаточно, как правило, режима работы ПЧ «Векторный в разомкнутой системе».

Почему именно он? Потому что позволяет управлять вращением двигателя в более широком диапазоне скоростей, чем скалярный режим. Это особенно важно на нижней границе диапазона, где требуется обеспечить номинальный момент на валу двигателя при возможной минимальной скорости вращения. Чем меньше значение выходной частоты ПЧ, при которой двигатель начинает вращение и имеет номинальную нагрузку на своем валу, тем меньше динамическая (ударная) нагрузка на все части механизма подъема.

Программирование ПЧ серии EI-9011 для управления механизмом подъема

Для программирования ПЧ необходимо подключить его к сети силового электропитания 3Ф, 380 В, 50 Гц. Соответственно, и электродвигатель, с которым предполагается работа, тоже следует подключить к ПЧ. Программирование производится с собственного пульта управления.

Векторный режим работы предусматривает обязательную автонастройку ПЧ с применяемым электродвигателем. Проводить ее следует при каждой замене двигателя.

Важное примечание: в процессе автонастройки ПЧ определяет ряд параметров двигателя во время вращения последнего. Поэтому для корректного определения параметров вал двигателя должен быть свободным — на нем не должно быть лишней присоединенной массы.

После подачи напряжения питания в основном меню ПО надо выбрать раздел «Инициализация». В этом разделе:

  • Выполнить инициализацию (возврат значений всех параметров к заводским).
  • Выбрать режим работы — «Векторный в разомкнутой системе».
  • Определить уровень доступа к параметрам — «Расширенный».

Выбор других разделом меню и параметров производится аналогично.

Программирование можно выполнить и с помощью пульта управления ПЧ. Вся информация выводится на дисплей пульта в доступном виде и с комментариями на русском языке.

Следующий шаг: в основном меню ПО надо выбрать раздел «Автонастройка». В этом разделе следует выполнить все указания по вводу значений параметров двигателя и запустить процесс автонастройки. Если после его завершения на дисплее пульта управления нет сообщений об ошибках, следует перейти к программированию.

Далее в основном меню ПО надо выбрать раздел «Программирование». Перечень его параметров определяется следующими условиями:

  • Управление работой ПЧ (человек или АСУ).
  • Управление работой механизма со стороны ПЧ.

Для рассматриваемого варианта применения алгоритм работы и управления будет следующим:

При подаче команды движения вверх или вниз ПЧ выдает команду на отключение тормоза (размораживает механизм), а затем начинает вращение двигателя с минимальной частоты. В процессе работы лебедки можно регулировать скорость вращения и, соответственно, линейную скорость перемещения зацепа с грузом, выбирая оптимальную.

Вернемся к электрической схеме внешних подключений к ПЧ.

Клеммы 1 и 2 имеют фиксированные функции пуска в прямом и обратном направлении вращения соответственно.

После подачи питания на ПЧ вид управления — дистанционный: световые индикаторы УПР и РЕГ светятся. За это состояние отвечают параметры b1-02 и b1-01 соответственно, т.е. ПЧ уже настроен на внешние команды «ПУСК» и «УПРАВЛЕНИЕ СКОРОСТЬЮ».

Управление тормозом лебедки будет выполнять многофункциональный дискретный выход: клеммы 9-10. К началу вращения, после подачи команды «ПУСК», контакты внутреннего реле замыкают клеммы 9-10 и обеспечивают подачу сигнала управления тормозной системой лебедки. Такой режим обеспечивает функция дискретного выхода «Во время вращения».

В сочетании с режимом торможения постоянным током при пуске можно создать момент на валу двигателя при минимальной выходной частоте, при котором не будет срыва управления, и динамические нагрузки будут минимальными.

Процесс торможения постоянным током при пуске определяется параметрами:

  • В2-01 — частота включения постоянного тока торможения.
  • В2-02 — уровень тока торможения.
  • В2-03 — время торможения постоянным током при пуске.

При подаче команды «ПУСК» включается торможение двигателя постоянным током, но тормоз еще не отключен. В течение времени торможения происходит предварительное намагничивание двигателя, и к моменту отключения тормоза на его валу уже создан начальный момент. Это поясняют следующие временные диаграммы:

При опускании груза направление вращения вала двигателя совпадает с направлением вектора силы, которая определяется массой груза, и эта сила пытается увеличить скорость вращения вала двигателя. Таким образом, двигатель переходит в генераторный режим работы.

ЭДС, которая вырабатывается двигателем в таком режиме, поступает в ПЧ, повышая напряжение на звене постоянного тока. Чтобы исключить аварийные остановки привода из-за перегрузки по напряжению, предусмотрен тормозной резистор. Он подключается к звену постоянного тока, когда напряжение ЗПТ достигает критического значения и рассеивает в тепло излишек электроэнергии.

Обобщая вышесказанное, можно составить минимальный список параметров с конкретными значениями для программирования режимов работы и управления ЧРП грузовой лебедки:

  • А1-03=2220,
  • А1-02=2,
  • А1-01=4,
  • В2-01=0,5,
  • В2-02=50.0,
  • В2-03=1.0,
  • Н2-01=37.

Рассмотренный пример ЧРП грузовой лебедки с применением ПЧ «Веспер» серии EI-9011 можно использовать как базовый — для проектирования более сложных механизмов подъема, с улучшенными эксплуатационными характеристиками.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector