Avtonova37.ru

Авто мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Бесщеточный двигатель постоянного тока схема управления с датчиком холла

Одна из причин проявления интереса к БД — это возросшая потребность в высокооборотных микродвигателях, обладающих точным позиционированием. Внутренне устройство таких приводов продемонстрировано на рисунке 2.

Рис. 2. Устройство бесколлекторного двигателя

Как видите, конструкция представляет собой ротор (якорь) и статор, на первом имеется постоянный магнит (или несколько магнитов, расположенных в определенном порядке), а второй оборудован катушками (В) для создания магнитного поля.

Примечательно, что эти электромагнитные механизмы могут быть как с внутренним якорем (именно такой тип конструкции можно увидеть на рисунке 2), так и внешним (см. рис. 3).

Рис. 3. Конструкция с внешним якорем (outrunner)

Соответственно, каждая из конструкций имеет определенную сферу применения. Устройства с внутренним якорем обладают высокой скоростью вращения, поэтому используются в системах охлаждения, в качестве силовых установок дронов и т.д. Приводы с внешним ротором используются там, где требуется точное позиционирование и устойчивость к перегрузкам по моменту (робототехника, медицинское оборудование, станки ЧПУ и т.д.).

Бесколлекторный двигатель в компьютерном дисководе

Бесколлекторные электродвигатели постоянного тока (BLDC двигатели) в настоящее время часто используются в потолочных вентиляторах и электрических движущихся транспортных средствах благодаря их плавному вращению. В отличие от других электродвигателей постоянного тока BLDC двигатели подключаются с помощью трех проводов, выходящих из них, при этом каждый провод образует свою собственную фазу, то есть получаем трехфазный мотор.

Хотя BLDC относятся к двигателям постоянного тока они управляются с помощью последовательности импульсов. Для преобразования напряжения постоянного тока в последовательность импульсов и распределения их по трем проводникам используется контроллер ESC (Electronic speed controller). В любой момент времени питание подается только на две фазы, то есть электрический ток заходит в двигатель через одну фазу, и покидает его через другую. Во время этого процесса запитывается катушка внутри двигателя, что приводит к тому, что магниты выравниваются по отношению к запитанной катушке. Затем контроллер ESC подает питание на другие два провода (фазы) и этот процесс смены проводов, на которые подается питание, продолжается непрерывно, что заставляет двигатель вращаться. Скорость вращения двигателя зависит от того как быстро подается энергия на катушку двигателя, а направление вращения – от порядка смены фаз, на которые поочередно подается питание.

Существуют различные типы BLDC двигателей – давайте рассмотрим основные из них. Различают Inrunner и OutRunner BLDC двигатели. В Inrunner двигателях магниты ротора находятся внутри статора с обмотками, а в OutRunner двигателях магниты расположены снаружи и вращаются вокруг неподвижного статора с обмотками. То есть в Inrunner (по этому принципу конструируется большинство двигателей постоянного тока) ось внутри двигателя вращается, а оболочка остается неподвижной. А в OutRunner сам двигатель вращается вокруг оси с катушкой, которая остается неподвижной. OutRunner двигатели особенно удобны для применения в электрических велосипедах, поскольку внешняя оболочка двигателя непосредственно приводит в движение колесо велосипеда, что позволяет обойтись без механизма сцепления. К тому же OutRunner двигатели обеспечивают больший крутящий момент, что делает их также идеальным выбором для применения в электрических движущихся средствах и дронах. Поэтому и в этой статье мы будем рассматривать подключение к платы Arduino двигателя OutRunner типа.

Читать еще:  Что делать когда быстро поднимается температура двигателя

Примечание : существует еще такой тип BLDC двигателей как бесстержневой (coreless), который находит применение в «карманных» дронах. Эти двигатели работают по несколько иным принципам, но рассмотрение принципов их работы выходит за рамки данной статьи.

BLDC двигатели с датчиками (Sensor) и без датчиков (Sensorless). Для BLDC двигателей, которые вращаются плавно, без рывков, необходима обратная связь. Поэтому контроллер ESC должен знать позиции и полюса магнитов ротора чтобы правильно запитывать статор. Эту информацию можно получить двумя способами: первый из них заключается в размещении датчика Холла внутри двигателя. Датчик Холла будет обнаруживать магнит и передавать информацию об этом в контроллер ESC. Этот тип двигателей называется Sensor BLDC (с датчиком) и он находит применение в электрических движущихся транспортных средствах. Второй метод обнаружения позиции магнитов заключается в использовании обратной ЭДС (электродвижущей силы), генерируемой катушками в то время когда магниты пересекают их. Достоинством этого метода является то, что он не требует использования каких либо дополнительных устройств (датчик Холла) – фазовый провод самостоятельно используется в качестве обратной связи благодаря наличию обратной ЭДС. Этот метод используется в двигателе, рассматриваемом в нашей статье, и именно он чаще всего применяется в дронах и других летающих устройствах.

Датчики и их отсутствие

Регуляторы хода подразделяются на две группы: с датчиком положения ротора и без.

Токовые силы подаются на обмотки двигателя при особом положении ротора.Его определяет электронная система с помощью датчика положения. Они бывают разнообразных типов. Популярный регулятор хода — дискретный датчик с эффектом Холла. В двигателе на три фазы на 30 вольт будет использовано 3 датчика. Блок электроники постоянно располагает данными о положении ротора и направляет напряжение вовремя в нужные обмотки.

Датчик Холла

Распространенное приспособление, изменяющие свои выводы при переключении обмоток.

Устройство с разомкнутым контуром измеряет ток, частоту вращения. ШИМ каналы присоединяются к нижней части системы управления.

Три ввода присоединяются к датчику Холла. В случае изменения датчика Холла, начинается процесс переработки прерывания. Для обеспечения быстрого реагирования обработки прерывания подключается датчик Холла к младшим выводам порта.

Сигналы датчика холла в момент вращения

Использование датчика положения с микроконтроллером

Микроконтроллеры AVR фирмы Atmel

Контроллер силы каскада лежит в основе AVR ядра, который обеспечивает грамотное управление бесколлекторным двигателем постоянного тока. AVR представляет собой чип для выполнения определенных задач.

Принцип работы регулятора хода может быть с датчиком и без. Программа платы AVR осуществляет:

  • пуск двигателя максимально быстро без использования внешних дополнительных приборов,
  • управление скоростью одним внешним потенциометром.

Электронный блок управления СМА LG 6871ER1007C

Отдельный вид автоматического управления сма, используется в стиральных машинах.

Достоинства и недостатки

По сравнению с обычными двигателями БДПТ имеют следующие достоинства:

  • большой кпд;
  • высокое быстродействие;
  • возможность изменения частоты вращения;
  • отсутствие искрящих щеток;
  • малые шумы, как в звуковом, так и высокочастотном диапазонах;
  • надежность;
  • способность противостоять перегрузкам по моменту;
  • отличное соотношение габаритов и мощности.
Читать еще:  Что может быть двигатель на больших оборотах не работает

Бесколлекторный двигатель отличается большим кпд. Он может достигать 93-95%.

Высокая надежность механической части БД объясняется тем, что в нем используются шарикоподшипники и отсутствуют щетки. Размагничивание постоянных магнитов происходит довольно медленно, особенно, если они выполнены с использованием редкоземельных элементов. При использовании в контроллере защиты по току срок службы этого узла довольно высок. Фактически срок службы БДПТ может определяться сроком службы шарикоподшипников.

Недостатками БДПТ является сложность системы управления и высокая стоимость.

Разновидности контроллеров управления

Критерий сравнения

Особенности

По принципу взаимодействия с электромотором

Для использования с датчиками Холла

Совместимы с мотор-колесами, оснащенными датчиками Холла.

Для работы без датчиков

Совместимы с моторами без датчиков, определяют позицию роторов по противо-ЭДС.

Могут работать и с датчиками положения, и без них.

По виду выходного сигнала

Создающие сигналы прямоугольного вида (меандр)

Цена таких моделей – ниже. При их использовании обеспечивается увеличенная скорость, но из-за вибрации обмоток двигатель шумит сильнее.

Создающие чистые синусоидальные сигналы.

Дороже. Обеспечивают тихую работу мотора и небольшое снижение максимальной скорости – по сравнению с меандровым контроллером при том же напряжении АКБ.

Сознающие сигналы в виде «модифицированной синусоиды» или сглаженного меандра.

По принципу реагирования на сигналы ручки газа

Обеспечивающие управление скоростью, мощностью или крутящим моментом.

Интегральные датчики Холла — статья Георгия Волович

Описано применение датчиков Холла, примеры использования. Рассмотрен датчик тока на основе датчика Холла, датчик обратной связи по положению, расходомер. Приведены формулы и схемы.

Применение датчиков Холла

Ниже рассматриваются некоторые наиболее популярные применения интегральных датчиков Холла. Перечень возможных применений этих датчиков далеко не ограничивается примерами, предложенными вниманию читателя. Технические задачи, для решения которых наиболее часто используются эти датчики, описываются в книге «Hall Effect Sensing and Application Book» (Honeywell MICRO SWITCH Sensing and Control. 1999.)

Линейные датчики Холла:

  • датчики тока;
  • приводы переменной частоты вращения;
  • схемы управления и защиты электродвигателей;
  • датчики положения;
  • датчики расхода;
  • бесколлекторные двигатели постоянного тока;
  • бесконтактные потенциометры;
  • датчики угла поворота;
  • детекторы ферромагнитных тел;
  • датчики вибрации;
  • тахометры.

Логические датчики Холла:

  • датчики частоты вращения;
  • устройства синхронизации;
  • датчики систем зажигания автомобилей;
  • датчики положения (обнаруживают перемещение менее 0,5 мм);
  • счётчики импульсов (принтеры, электроприводы);
  • датчики положения клапанов;
  • блокировка дверей;
  • бесколлекторные двигатели постоянного тока;
  • измерители расхода;
  • бесконтактные реле;
  • детекторы приближения;
  • считыватели магнитных карточек или ключей;
  • датчики бумаги (в принтерах).

Датчики тока

Линейные датчики Холла могут быть использованы в составе измерителей силы тока в пределах от 250 мА до тысяч ампер. Важнейшим достоинством таких датчиков является полное отсутствие электрической связи с измеряемой цепью. Линейные датчики позволяют измерять постоянные и переменные токи, в том числе токи довольно высокой частоты. Если линейный датчик Холла расположен вблизи проводника с током, то выходное напряжение датчика пропорционально индукции магнитного поля, окружающего проводник. Величина индукции, в свою очередь, пропорциональна току.

Рис.6 Конструкция датчиков тока

Рис.7 Позиционный привод с датчиком Холла в обратной связи по положению

В простейшем случае датчик тока представляет собой конструкцию, в которой датчик Холла устанавливается около провода, по которому течёт измеряемый ток (рис. 6а). Такие датчики используются для измерения больших токов, особенно в линиях электропередач. Индукция В определяется по формуле:

Читать еще:  Как установить дизельный двигатель на газель своими руками

где r – расстояние от центра чувствительной области датчика до оси симметрии проводника в метрах. Чувствительность датчика тока может быть значительно увеличена путём использования концентратора магнитного потока в виде магнитопровода с прорезью, в которую помещается линейный датчик Холла (рис. 6б). В этом случае индукция магнитного потока через датчик:

Линейный датчик обратной связи по положению

Линейные датчики Холла могут быть использованы во многих видах позиционных приводов. Это иллюстрируется на рис. 7, где положение перемещаемой части, на которой закреплен магнит, устанавливается автоматически таким образом, чтобы разность между сигналом регулировки положения и сигналом датчика равнялась нулю. Бесколлекторные двигатели постоянного тока отличаются от обычных двигателей постоянного тока, имеющих коллекторно-щёточный узел, прежде всего тем, что коммутация секций якорной обмотки осуществляется электронной схемой, а не механическими скользящими контактами. Поэтому такие двигатели имеют гораздо большие надёжность и ресурс, требуют меньше обслуживания, почти не создают электромагнитных помех и могут использоваться при пониженном атмосферном давлении.

Рис.8 Датчики положения ротора бесколлекторного двигателя постоянного тока

Рисунок 8 показывает, как может быть получена информация о положении ротора для управления электронным коммутатором с помощью трёх датчиков Холла. Работа двигателя этого типа, представляющего собой по существу синхронный двигатель, основана на принципе самосинхронизации. Необходимую для работы датчиков Холла конфигурацию магнитного поля создают постоянные магниты, установленные на валу ротора. Датчики считывают угловую позицию вала и передают эту информацию схеме управления, которая обеспечивает своевременное отпирание и запирание силовых ключей электронного коммутатора обмоток статора. Подобные датчики положения ротора используются и в системах векторного управления двигателями переменного тока.

Рис.9 Датчик расхода

Существуют различные методы измерения расхода с использованием цифровых датчиков Холла, но принцип у них, как правило, общий: каждое изменение магнитного потока через датчик соответствует некоторой порции жидкости или газа, прошедшей через трубопровод. В примере, показанном на рис. 9, магнитное поле создаётся постоянными магнитами, установленными на лопастях рабочего колеса. Рабочее колесо вращается потоком воды. Датчик выдаёт два импульса за оборот колеса.

Приглашаем на выставку «МЕТАЛЛООБРАБОТКА-2018»

Плюсы и минусы бесколлекторных двигателей

К сожалению, несмотря на все свои достоинства, бесколлекторный двигатель вовсе не идеальное устройство, которое тоже, как и все другие приборы, созданные человеком, имеет ряд минусов. Но начнем с хорошего.

Плюсы бесколлекторных приводов:

  1. Компактность, благодаря маленькому размеру активизирующих работу магнитных элементов.
  2. Отсутствие коллекторного узла, соответственно отсутствие сложного обслуживания и сервиса.
  3. Отсутствие помех и шумов, в отличие от коллекторных двигателей.
  4. Коэффициент ПД более 90 процентов.
  5. Высокая граница максимального количества оборотов, которая может достигать ста тысяч в секунду.

Минусы бесколлекторных приводов:

  1. Если нет контролирующего устройства переключения напряжения или, другими словами электро-контроллера, двигатель не будет работать.

Это единственный и пожалуй основной недостаток. Проблема заключается в том, что стоимость данного прибора достаточно высокая, однако она соответствует итоговому результату.

Надеемся, что данная статья была для вас информативной и полезной.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector