Avtonova37.ru

Авто мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чем опасны токи короткого замыкания для двигателей перегревом изоляции

Короткие замыкания и их классификация. Последствия КЗ на реальных примерах

Добрый день, уважаемые читатели сайта «Заметки электрика».

Давно хотел написать статью про короткое замыкание. Но все как то не доходили руки.

Сегодня решился, потому как повлияли на меня последние события, произошедшие на распределительной подстанции нашего предприятия.

Ранее в статьях мы говорили, что повреждения в электроустановках вызывают короткие замыкания, или сокращенно, к.з.

Короткое замыкание — это одно из самых тяжелых и опасных видов повреждения.

Вы спросите почему? Читайте ниже.

Википедия на этот вопрос отвечает, что короткое замыкание — это:

А теперь давайте рассмотрим подробно, что же происходит с параметрами электроустановки в момент короткого замыкания.

При возникновении короткого замыкания, напряжение на источнике питания, а правильнее назвать ЭДС, замыкается «накоротко» через небольшое (малой величины) сопротивление кабельных и воздушных линий, обмоток трансформаторов и генераторов. Отсюда и название «короткое замыкание».

В «накоротко» замкнутой цепи появляется ток очень большой величины, который и называется током короткого замыкания.

Классификация коротких замыканий

Рассмотрим классификацию коротких замыканий.

Короткие замыкания разделяются по количеству замкнувшихся фаз:

  • трехфазные короткие замыкания
  • двухфазные короткие замыкания
  • однофазные короткие замыкания

Короткие замыкания разделяются по замыканию:

  • с землей
  • без земли

Короткие замыкания разделяются по количеству замкнувшихся точек в сети:

  • в одной точке
  • в двух точках
  • в нескольких точках (более двух)

Пример

Допустим, что наш потребитель питается с подстанции через воздушную линию (ВЛ) электропередач. Питающая линия является транзитной, поэтому питание потребителя осуществляется отпайкой от линии ВЛ в точке «О».

Пунктирной линией под номером 2 показан уровень напряжения на протяжении всей воздушной линии до возникновения короткого замыкания.

По рисунку видно, что напряжение в любой точке электрической сети равно разнице ЭДС источника питания и падения напряжения в электрической цепи до необходимой нам точки.

Например, напряжение в точке «О» можно рассчитать по формуле:

Uо = E — I*Zo, где

  • E — ЭДС источника питания, в нашем случае генератора
  • Zo — полное сопротивление воздушной линий от источника питания до точки «О» (состоит из активного и реактивного сопротивления)
  • I — ток, протекающий по воздушной линии в данный момент времени.

Аналогично, можно рассчитать напряжение в любой точке нашей воздушной линий.

Предположим, что по каким-либо причинам произошло короткое замыкание на воздушной линии, но за пределами нашей отпайки. Назовем эту точку короткого замыкания буквой «К».

Что же произойдет в момент короткого замыкания?

В момент короткого замыкания по воздушной линии проходит уже не номинальный ток, а ток короткого замыкания большой величины, поэтому возрастает падение напряжения на каждом элементе электрической цепи. А именно на сопротивлении Zo и Zк.

Самое наибольшее снижение напряжения будет в месте короткого замыкания, т.е. в точке «К». В остальных точках воздушной линии, удаленных от места к.з., напряжение снизится чуть меньше (это видно на рисунке — линия под номером 1).

В одной из своих статей я привел наглядный пример расчета токов короткого замыкания. Переходите по ссылочке и знакомьтесь с материалами.

Последствия от короткого замыкания

Мы уже выяснили, что в момент короткого замыкания происходит резкое увеличение величины тока и снижение напряжения, что приводит к следующим последствиям.

1. Разрушения

По закону известного физика Джоуля-Ленца, ток короткого замыкания, протекая по активному сопротивлению электрической цепи в течение некоторого времени, выделяет в нем тепло, которое рассчитывается по формуле:

В точке короткого замыкания это тепло, а также пламя электрической дуги, производят огромные разрушения. И чем больше ток короткого замыкания и время его прохождения по цепи, тем больше будут разрушения.

Чтобы было понятно Вам насколько эти разрушения масштабны, ниже приведу примеры из своей практики.

Короткое замыкание в кабине трансформаторов

Привод переключающего устройства РПН. Короткое замыкание произошло в обмотке асинхронного двигателя

2. Повреждение изоляции

Во время прохождения тока короткого замыкания по неповрежденным линиям, происходит их нагрев выше предельной допустимой температуры, что приводит к повреждению их изоляции.

Активная часть трансформатора. Короткое замыкание произошло по причине повреждения изоляции

Повреждение изоляции кабельной линий привело к короткому замыканию

Короткое замыкание кабеля. Последствия

3. Потребители и электроприемники

Снижение напряжения при коротком замыкании нарушает нормальную работу потребителей и электроприемников электрической энергии.

Например, асинхронный электродвигатель при снижении напряжения сети может вообще остановиться, т.к. момент его вращения может оказаться меньше момента сопротивления и трения механизмов.

Также нарушается нормальная работа и осветительных остановок. Здесь я думаю объяснять не требуется.

Смотрите наглядное видео про причины и последствия короткого замыкания в электроустановке 400 (В) на одной из наших подстанций:

А вот уже случай по-серьезнее — трехфазное короткое замыкание в сети 10 (кВ).

Вот еще фрагменты аварии, которая возникла по причине короткого замыкания в разделке кабеля 10 (кВ):

P.S. В завершении статьи на тему короткое замыкание, хочется подтвердить сказанное в начале своей статьи, что короткое замыкание является самым опасным и тяжелым видом повреждения, которое требует мгновенного и быстрого реагирования и отключения поврежденного участка цепи.

  1. Виды электропроводок
  2. Цветовая маркировка проводов и шин
  3. Измерение сопротивления изоляции
  4. Как правильно установить электросчетчик
  5. Расчет сечения кабеля. Программа Электрик
  6. Как определить сечение провода?

57 комментариев к записи “Короткие замыкания и их классификация. Последствия КЗ на реальных примерах”

Где стоял асинхронник, если РПН так разворатило?

Асинхронный двигатель переключающего устройства стоял в приводе в правом нижнем углу. Там видно оставшиеся секции обмоток. При коротком замыкании произошел пожар внутри привода и сгорело абсолютно все.

Чёткая и понятная инструкция, что делать если случается короткое замыкание. Спасибо! Берём вместе с мужем в заметки!

Приехал только что из командировки, здание ТП осело примерно на 30 см, в результате сильных дождей перезамыкало всё что могло (ввод с земли был). Если интересует, могу фото в коллекцию прислать.

Присылайте. С удовольствием размещу их в данной статье.

Одно маленькое короткое замыкание — и такие последствия! Как Вы разбираетесь потом в этих руинах.

Ничего сложного. Все сгоревшее электрооборудование демонтируется, а на его месте монтируется все заново.

Мда… Я в 2007 году видел последствия короткого замыкания в одном студенческом общежитии. Это было полностью выгоревшее крыло здания — чёрные стены, чёрный потолок и покорёженный расплавленный электрощиток. Зрелище жуткое.

На фоне этого меня поразило отсутствие какой-либо пожарной безопасности в том общежитии — я не знаю, что там стояли за автоматы, но при коротком замыкании они по прежнему не срабатывали.

Ещё больше меня поразило то, что у большинства иностранных студентов из Индии, которые учились на 1-м курсе ДГУ, всё понятие об электричестве сводилось к вставлению вилки в розетку и нажатию на кнопки аппаратуры. Всё! И если на шнуре питания будут выглядывать оголённые провода, которые будут ещё и коротить друг с другом, им абсолютно по барабану, на такие вещи они никогда не обращают внимания, даже если прямо на глазах у них бахнет в момент включения прибора в розетку, они не знают, что нужно делать.

И вот однажды прямо на моих глазах так и произошло — один студент из Индии захотел включить электрокипятильник, на котором у рукоятки провод был повреждён, и вставил вилку в розетку. Тут как бахнет с яркой вспышкой, смотрю на студента, тот сидит перепуганный, не знает что делать, я ему кричу «выдёргивай из розетки. » Вилку он выдернул, ну а свет в комнате конечно же не погас, т.е. никакой защиты от короткого замыкания не было либо она не сработала.

Студент из Индии смотрит на меня перепуганным взглядом и спрашивает, что произошло ? Я показываю ему на чёрную от сажи розетку, вилку и на чёрный обугленный провод в месте короткого замыкания. Тут и выяснилось, что он ничего не знал на эту тему, попытался ему объяснить, что такое короткое замыкание, чем оно грозит, и почему нужно всегда обращать внимание на отсутствие повреждений проводов всего того, что включается в розетку.

Читать еще:  100 лошадиных сил это какой объем двигателя

М-да, жесть…и не только из Индии, половина Азии в том числе.

Что такое короткое замыкание

Короткое замыкание (сокращённо КЗ) – это аварийный режим электрической цепи, который представляет собой соединение двух точек этой цепи с разницей потенциалов. Так как это аварийный режим работы, то он не предусматривается конструкцией устройства или линией электроснабжения, находящейся под напряжением. Возникновение процесса КЗ связано с резким увеличением силы тока, до максимально возможного значения, при этом масштабы повышения характеризуются мощностью источника питания. Также увеличение тока в режиме замыкания сопровождается снижением величины напряжения, так как происходит падение напряжения.

Важно! Увеличение силы тока вызывает повышенный резкий перегрев проводников. Соответственно, для надёжности электроснабжения в случае возникновения короткого замыкания любая (без исключения) цепь должна иметь надёжные инструменты и быстро реагирующую аппаратуру для аварийного отключения потенциально опасного участка от источника напряжения.

Последствия короткого замыкания [ править | править код ]

При коротком замыкании резко и многократно возрастает сила тока, протекающего в цепи, что, согласно закону Джоуля — Ленца приводит к значительному тепловыделению, и, как следствие, возможно расплавление электрических проводов, с последующим возникновением возгорания и распространением пожара.

Короткое замыкание в одном из элементов энергетической системы способно нарушить её функционирование в целом — у других потребителей может снизиться питающее напряжение, что может привести к повреждению устройства; в трёхфазных сетях при коротких замыканиях возникает асимметрия напряжений, нарушающая нормальное электроснабжение. В больших энергосетях короткое замыкание может вызывать тяжёлые системные аварии.

Для защиты от короткого замыкания принимают специальные меры:

  1. Ограничивающие ток от короткого замыкания:
    • устанавливают токоограничивающие электрические реакторы;
    • применяют распараллеливание электрических цепей, то есть отключение секционных и шиносоединительных выключателей;
    • используют понижающие трансформаторы с расщеплённой обмоткой низкого напряжения;
    • используют отключающее оборудование — быстродействующие коммутационные аппараты с функцией ограничения тока короткого замыкания — плавкие предохранители и автоматические выключатели[1] ;
  2. Применяют устройства релейной защиты для отключения повреждённых участков цепи

Защита от короткого замыкания

Сначала о том, какие последствия может вызвать КЗ:

  1. Поражение человека электрическим током и выделяющимся теплом.
  2. Пожар.
  3. Выход из строя приборов.
  4. Отключение электричества и отсутствие интернета дома. Как следствие — вынужденная необходимость читать книги и ужинать при свечах.

КЗ — возможная причина пожара

Как видите, короткое замыкание – враг и вредитель, с которым нужно бороться. Какие есть способы защиты от короткого замыкания?

Почти все они основаны на том, чтобы быстро разомкнуть цепь при обнаружении КЗ. Это можно сделать с помощью разных аппаратов защиты от короткого замыкания.

Почти во всех современных электроприборах есть плавкие предохранители. Большой ток просто расплавляет предохранитель, и цепь разрывается.

В квартирах используются автоматы защиты от короткого замыкания. Это автоматические выключатели, рассчитанные на определенный рабочий ток. При повышении силы тока автомат срабатывает, разрывая цепь.

Для защиты промышленных электродвигателей от коротких замыканий используются специальные реле.

Автомат защиты от КЗ

Теперь вы можете легко дать определение короткому замыканию, заодно знаете про закон Ома, а также фазу и ноль в электричестве. Желаем всем не устраивать коротких замыканий! А если у вас в голове «замкнуло» и совершенно нет сил на какую-то работу, наш студенческий сервис всегда поможет с ней справиться.

А напоследок видео о том, как НЕ НУЖНО обращаться с электрическим током.

  • Контрольная работа от 1 дня / от 120 р. Узнать стоимость
  • Дипломная работа от 7 дней / от 9540 р. Узнать стоимость
  • Курсовая работа 5 дней / от 2160 р. Узнать стоимость
  • Реферат от 1 дня / от 840 р. Узнать стоимость

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Виды коротких замыканий

Понятие короткого замыкания подразумевает электрическое соединение, которое не предусмотрено условиями эксплуатации оборудования между точками различных фаз, либо нейтрального проводника с фазой или земли с фазой (при наличии контура заземления нейтрали источника питания).

При эксплуатации потребителей напряжение питания может подключаться различными способами:

  • По схеме трехфазной сети 0,4 киловольта.
  • Однофазной сетью (фазой и нолем) 220 В.
  • Источником постоянного напряжения выводами положительного и отрицательного потенциала.

В каждом отдельном случае может возникнуть нарушение изоляции в некоторых точках, вследствие чего возникает ток короткого замыкания.

Для 3-фазной сети переменного тока существуют разновидности короткого замыкания:

  1. Трехфазное замыкание.
  2. Двухфазное замыкание.
  3. Однофазное замыкание на землю.
  4. Однофазное замыкание на землю (Изолированная нейтраль).
  5. Двухфазное замыкание на землю.
  6. Трехфазное замыкание на землю.

При выполнении проекта снабжения электрической энергией предприятия или оборудования подобные режимы требуют определенных расчетов.

Причины повреждения изоляции
  • Воздействие на изоляцию механическим путем.
  • Электрический пробой токоведущих частей вследствие чрезмерных нагрузок или перенапряжения.
  • Подобно нарушению изоляции можно считать причиной повреждения схлестывание неизолированных проводов воздушных линий от сильного ветра.
  • Наброс металлических предметов на линию.
  • Воздействие животных на проводники, находящиеся под напряжением.
  • Ошибки в работе обслуживающего персонала в электроустановках.
  • Сбой в функционировании защит и автоматики.
  • Техническое старение оборудования.
  • Умышленное действие, направленное на повреждение изоляции.
Последствия короткого замыкания

Ток короткого замыкания во много раз превышает ток при нормальной работе оборудования. Возможными последствиями такого замыкания могут быть:

  • Перегрев токоведущих частей.
  • Чрезмерные динамические нагрузки.
  • Прекращение подачи электрической энергии потребителям.
  • Нарушение нормального функционирования других взаимосвязанных приемников, которые подключены к исправным участкам цепи, из-за резкого снижения напряжения.
  • Расстройство системы электроснабжения.

Принцип действия короткого замыкания

До начала возникновения короткого замыкания величина тока в электрической цепи имела установившееся значение iп. При резком коротком замыкании в этой цепи из-за сильного уменьшения общего сопротивления цепи электрический ток значительно повышается до значения iк. Вначале, когда время t равно нулю, электрический ток не может резко измениться до другого установившегося значения, так как в замкнутой цепи кроме активного сопротивления R, есть еще и индуктивное сопротивление L. Это увеличивает во времени процесс возрастания тока при переходе на новый режим.

В результате в начальный период короткого замыкания электрический ток сохраняет первоначальное значение iK = iно. Чтобы ток изменился, необходимо некоторое время. В первые мгновения этого времени ток повышается до максимального значения, далее немного снижается, а затем через определенный период времени принимает установившийся режим.

Период времени от начала замыкания до установившегося режима считается переходным процессом. Ток короткого замыкания можно рассчитать для любого момента в течение переходного процесса.

Ток КЗ при режиме перехода лучше рассматривать в виде суммы составляющих: периодического тока i пt с наибольшей периодической составляющей I пт и апериодического тока i аt (его наибольшее значение – I am).

Апериодическая составляющая тока КЗ во время замыкания постепенно затухает до нулевого значения. При этом ее изменение происходит по экспоненциальной зависимости.

Возможный максимальный ток КЗ считают ударным током iу. Когда нет затухания в начальный момент замыкания, ударный ток определяется:

I у i пm + i аt=0’, где i пm является амплитудой периодической токовой составляющей.

Полезное короткое замыкание

Считается, что короткое замыкание является отрицательным и нежелательным явлением, от которого происходят разрушительные последствия в электроустановках. Оно может создать условия для пожара, отключения защитной аппаратуры, обесточиванию объектов и другим последствиям.

Однако ток короткого замыкания может принести реальную пользу на практике. Есть немало устройств, функционирующих в режиме повышенных значений тока. Для примера можно рассмотреть сварочный аппарат. Наиболее ярким примером для этого послужит электродуговая сварка, при работе которой накоротко замыкается сварочный электрод с заземляющим контуром.

Такие режимы короткого замыкания действуют кратковременно. Мощность сварочного трансформатора обеспечивает работу при таких значительных перегрузках. Во время сварки в точке соприкосновения электрода возникает очень большой ток. В итоге выделяется значительное количество теплоты, достаточное для расплавления металла в месте касания, и образования сварочного шва достаточной прочности.

Способы защиты

Еще в начале развития электротехники появилась проблема защиты электрических устройств от чрезмерных токовых нагрузок, в том числе и короткого замыкания. Наиболее простым решением стала установка плавких предохранителей, которые перегорали от их нагревания вследствие превышения тока определенной величины.

Читать еще:  Газель некст сколько масла лить в двигатель

Такие плавкие вставки функционируют и в настоящее время. Их основным достоинством является надежность, простота и невысокая стоимость. Однако имеются и недостатки. Простая конструкция предохранителя побуждает человека после сгорания плавкого элемента заменить его самостоятельно подручными материалами в виде скрепок, проволочек и даже гвоздей.

Такая защита не способна обеспечить необходимой защиты от короткого замыкания, так как она не рассчитана на определенную нагрузку. На производстве для отключения цепей, в которых возникло замыкание, используют электрические автоматы. Они намного удобнее обычных плавких предохранителей, не требуют замены сгоревшего элемента. После устранения причины замыкания и остывания тепловых элементов, автомат можно просто включить, тем самым подав напряжение в цепь.

Существуют также более сложные системы защиты в виде дифференциальных автоматов. Они имеют высокую стоимость. Такие устройства отключают напряжение цепи в случае наименьшей утечки тока. Такая утечка может возникнуть при поражении работника током.

Другим способом защиты от короткого замыкания является токоограничивающий реактор. Он служит для защиты цепей в сетях высокого напряжения, где величина тока КЗ способна достичь такого размера, при котором невозможно подобрать защитные устройства, выдерживающие большие электродинамические силы.

Реактор представляет собой катушку с индуктивным сопротивлением. Он подключен в цепь по последовательной схеме. При нормальной работе на реакторе имеется падение напряжения около 4%. В случае возникновения КЗ основная часть напряжения приходится на реактор. Существует несколько видов реакторов: бетонные, масляные. Каждый из них имеет свои особенности.

Закон Ома при КЗ

В основе расчета замыканий цепи лежит принцип, который определяет вычисление силы тока по напряжению, путем его деления на подключенное сопротивление. Такой же принцип работает и при определении номинальных нагрузок. Отличие в следующем:

  • При возникновении аварийного режима процесс протекает случайным образом, стихийно. Однако он поддается некоторым расчетам по разработанным специалистами методикам.
  • В процессе нормальной работы электрической цепи сопротивление и напряжение находятся в уравновешенном режиме и могут незначительно изменяться в рабочих диапазонах в пределах нормы.
Мощность источника питания

По этой мощности выполняют оценку энергетической силовой возможности разрушительного действия, которое может осуществить ток короткого замыкания, проводят анализ времени протекания, размер.

Для примера рассмотрим, что отрезок медного проводника с площадью сечения 1,5 мм 2 длиной 50 см сначала подсоединили непосредственно к батарее «Крона». А в другом случае этот же кусок провода вставили в бытовую розетку.

В случае с «Кроной» по проводнику будет протекать ток КЗ, который нагреет эту батарею до выхода ее из строя, так как мощности батареи не достаточно для того, чтобы нагреть и расплавить подключенный проводник для разрыва цепи.

В случае с бытовой розеткой сработают защитные устройства. Представим, что эти защиты вышли из строя, и не сработали. В этом случае ток короткого замыкания будет протекать по бытовой проводке, затем по проводке всего подъезда, дома, и далее по воздушной линии или кабеля. Так он дойдет до трансформатора питания на подстанции.

В результате к трансформатору подсоединяется длинная цепь с множеством кабелей, проводов, различных соединений. Они намного повысят электрическое сопротивление нашего опытного отрезка провода. Однако даже в таком случае остается большая вероятность того, что этот кусок провода расплавится и сгорит.

Сопротивление цепи

Участок линии электропередач от источника питания до места короткого замыкания обладает некоторым электрическим сопротивлением. Его значение влияет на величину тока короткого замыкания. Обмотки трансформаторов, катушек, дросселей, пластин конденсаторов вносят свой вклад в суммарное сопротивление цепи в виде емкостных и индуктивных сопротивлений. При этом создаются апериодические составляющие, которые искажают симметричность основных форм гармонических колебаний.

Существует множество различных методик, с помощью которых производится расчет ток короткого замыкания. Они позволяют рассчитать с необходимой точностью ток короткого замыкания по имеющейся информации. Практически можно измерить сопротивление имеющейся схемы по методике «фаза-ноль». Это сопротивление делает расчет более точным, вносит соответствующие коррективы при подборе защиты от короткого замыкания.

Разновидности замыканий проводки, их причины и методы поиска

Казалось бы, причины короткого замыкания силовой электропроводки и их разновидности это разные вопросы, но на деле они тесно переплетаются между собой. По сути, замыкание это следствие ряда причин, по которым фазный провод напрямую соприкасается с нулевым, либо изоляция между ними не препятствует возникновению дугового разряда (разумеется, при наличии на проводниках напряжения). Основные причины из-за чего коротит проводка и какие могут быть последствия, по которым можно определить место поломки, следующие:

Физический износ изоляции

Происходит с течением времени и вследствие даже незначительных, но регулярных перепадов температур.

Обычно в таком случае изоляция постепенно из гибкой становится хрупкой – на ней появляются трещины в которых может скапливаться влага или пыль. В случае неблагоприятного стечения обстоятельств это может спровоцировать возникновение КЗ через микродугу, причем это самый тяжелый случай с точки зрения поиска неисправности.

При этом внешне вся проводка выглядит целой, но когда на нее подается напряжение, то со временем выбивает автомат защиты.

Поиск подавляющего большинства неисправностей в электроцепи происходит по принципу проверки «слабых звеньев» — это любые контакты, переходы – все те места, где при монтаже вскрывается наружная изоляция кабеля. Поэтому в скрытой проводке поиск неисправности всегда надо начинать в розетках, коробах и щитках.

Как итог – в этом случае проводится внимательный осмотр проводки – если уже выбивает автомат защиты, то возможно место повреждения изоляции будет подгоревшим и его станет видно. В некоторых случаях приходится устаивать проводке «стресс-тест» – подавая на нее повышенное напряжение. Это достаточно экстремальный способ, ведь по сути приходится провоцировать полноценное короткое замыкание электропроводки, после которого место неисправности видно «невооруженным глазом.

Для скрытой проводки и нахождения микротрещин в изоляции также можно воспользоваться и мегаомметром, но он только покажет наличие КЗ на локализованном участке электроцепи, а место его возникновения определить не сможет.

После того, как находим неисправность, то уже в зависимости от общего состояния проводки надо решать, менять кабель или обойтись восстановлением изоляции посредством изоленты.

Пример работы мегаомметра – на видео:

Повреждение изоляции грызунами

Это достаточно частое явление в сельской местности, да и в промышленных условиях такие поломки далеко не редкость – мыши прогрызают наружную изоляцию кабелей, затем внутреннюю и замыкают собой фазу с нолем.

Сложность поиска такой неисправности может заключаться в том, что неизвестно где мышь могла облюбовать себе место для «трапезы». Но с другой стороны, обычно место повреждения хорошо заметно, поэтому достаточно поверхностного осмотра провода, хоть и по всей его длине.

Надо учитывать, что здесь не всегда происходит полноценное замыкание – иногда мышь может частично повредить изоляцию и замкнуть провода не напрямую, а через себя. В таком случае велика вероятность найти место повреждения провода по погибшему животному, которого судорога от электрического тока приковывает к перегрызенному проводу. Хотя иногда бывает и такое, что мышь отбрасывает от кабеля, особенно если у нее получается замкнуть провода напрямую и произойдет полноценное короткое замыкание погрызенной проводки.

Значительный перегрев изоляции кабелей

Это не всегда заметно глазу, но при подаче напряжения на провода, на них начинает действовать электромагнитное поле, которое стремится распрямить их металлическую часть. Пока провод работает в штатном режиме, это не имеет особого значения, но если к нему подключен слишком мощный потребитель, то жилы начнут нагреваться. Когда вследствие этого изоляция станет мягкой, то жилы под воздействием электромагнитного поля расшатают пластик изнутри, а со временем и полностью его прорвут. В итоге произойдет полноценное замыкание и выбьет автомат защиты, а если совсем не повезет, то загорится сама изоляция кабеля.

Пока не расплавится изоляция провода, визуально заметить, что она становится мягкой невозможно – поэтому после прокладки новой линии или подключении на нее дополнительного электрооборудования, надо обязательно проконтролировать, не нагревается ли кабель.

Производители проводов обычно указывают на бирках, сколько кратковременных нагревов может выдержать изоляция, но в любом случае, если перегревы уже происходили, то кабель лучше менять.

Читать еще:  Что нужно для того чтобы делать компьютерную диагностику двигателя

Прямое соединение фазного и нулевого проводов

Причины, по которым напрямую коротнуло силовую проводку могут быть самыми разнообразными – от банальной невнимательности, которую иногда допускают выполняя монтаж, до аварии вследствие бури или другого стихийного бедствия.

Главное здесь то, что при прямом соприкосновении фазы и ноля всегда происходит скачкообразное повышение силы тока и температуры на токоведущих жилах. В большинстве случаев провода не рассчитаны на то, чтобы выдерживать токи короткого замыкания, поэтому в месте соприкосновения происходит мини-взрыв, вследствие которого выгорает изоляция, а разлетающиеся расплавленные частицы токоведущих жил разносят ее пепел вокруг. В этом случае нет особой проблемы в том, как найти короткое замыкание в проводке – все видно невооруженным глазом – провода оплавлены и все вокруг в саже.

Здесь особо надо учитывать, что сажа, которая покрывает всю прилегающую поверхность, как и пыль, в определенных концентрациях способна проводить электрический ток, поэтому при ликвидации последствий замыкания ее надо тщательно вычищать.

Исследование электрических проводников со следами аварийных режимов работы

Версии о причастности к пожару электротехнических приборов, электропроводок и устройств необходимо обязательно рассматривать, если в очаговой зоне имелось электрооборудование, а электросеть была под напряжением. Это связано с тем, что электрооборудование, как правило, представляет реальную пожарную опасность, и выявить или исключить его причастность к возникновению пожара следует непременно.

Существуют следующие типичные пожароопасные режимы:

  • Короткое замыкание, то есть режим, при котором происходит соединение разнополярных проводников, находящихся под напряжением, через малое сопротивление, не предусмотренное режимом работы цепи, машины или аппарата
  • Перегрузка, то есть режим, при котором в проводниках возникают токи, превышающие величины, допускаемые нормами
  • Большие переходные сопротивления (БПС) в местах перехода тока с одной контактной поверхности на другую через площадки их действительного соприкосновения, влекущие значительное локальное выделение тепла.

К следам короткого замыкания относятся различные оплавления проводников, прожоги и проплавления в металлических деталях (трубы, корпуса приборов и т.д.). Признаками оплавлений токами короткого замыкания является характерная форма оплавлений (шаровая, овальная, каплеобразная с гладковытянутой или неровной поверхностью, либо в виде выемок с неровными наплывами) и их локальность.

Пример локального оплавления на медном проводнике

Признаками образования больших переходных сопротивлений являются: изъязвление контактных площадок вследствие искрения; появление на металле в местах соединений цветов побежалости; хрупкость и растрескивание изоляции.

Признаком всех аварийных режимов работы электрооборудования является обугливание изоляции на кабелях, шнурах и проводах преимущественно изнутри (то есть со стороны токопроводящих жил).

Повреждения на электротехнических изделиях могут быть вызваны не только электрическим током, но и другими факторами, например, механические повреждения или воздействие температуры пожара.

Пример оплавлений, вызванных теплом пожара

Этапы исследования электротехнических объектов включают в себя:

  • Визуальный осмотр
  • Морфологические исследования
  • Рентгенофазовый анализ
  • Металлографические исследования

Визуальный осмотр и морфологические исследования

В процессе визуального осмотра эксперты выявляют наличие следов аварийных режимов работы электрооборудования. Для этого используются различные измерительные приборы и инструменты, зачастую используется микроскоп МБС-10 (морфологические исследования).

На этапе визуального осмотра и морфологических исследований объектов эксперт выявляет наличие следов аварийных режимов работы электрооборудования, и, при выявлении их наличия, принимает решение о дальнейших действиях.

Следы больших переходных сопротивлений под микроскопом МБС-10

Основная сложность состоит в том, что аварийные режимы работы электрооборудования могут являться не только причиной пожара, но и могут быть вызваны самим пожаром. Например, когда изоляция проводников плавится (сгорает) и разнополярные жилы проводников соединяются между собой.

Лаборатория металлов и сплавов

Поэтому, для определения причастности аварийных режимов работы электрооборудования к возникновению пожара, в ФГБУ СЭУ ФПС ИПЛ по Республике Мордовия применяются инструментальные методы исследований — рентгенофазовый анализ и металлографические исследования.

Рентгенофазовый анализ

Данный метод применяется только для медных жил. Он является не разрушающим методом и позволяет сохранить участки жил с оплавлениями для дальнейших исследований. Рентгенофазовый анализ выполняется при помощи рентгеновского дифрактометра ДР-01.

Рентгеновский дифрактометр ДР-01

Известно, что медь обладает большим сродством с кислородом. При коротком замыкании не в условиях пожара по длине жилы возникает градиент температур. В месте оплавления достигается температура расплавления меди 1083°С и выше, на поверхности оплавления и вблизи него на прилегающем участке, интенсивно образуется закись меди Сu2О в виде пленки или чешуек черного цвета. По мере удаления от места оплавления температурное влияние дуги короткого замыкания ослабевает, и содержание закиси меди на поверхности жилы уменьшается. При коротком замыкании в условиях реального пожара в задымленной атмосфере содержатся продукты неполного сгорания органических веществ, в частности СО. В этом случае при коротком замыкании будет происходить восстановление закиси меди в месте оплавления и на непосредственно прилегающем к нему участке жилы. Поэтому приповерхностное содержание закиси меди Сu2О на этих участках будет значительно ниже, чем на отстоящем участке.

Данное исследование заключается в определении и последующем сравнении количества Cu2О в приповерхностном слое медного проводника непосредственно вблизи оплавления (участок 1) и на удалении от него на 30-35 мм (участок 2).

Участки провода, подвергаемые рентгеноструктурному анализу.

После измерений находят соотношение площадей линий Cu2O и Cu для первого и второго измерения, пропорциональное интенсивности этих линий ICu2O/ IСu и поверхностной концентрации закиси меди.

Линии меди и закиси меди в дифрактограмме медного проводника

Если величина отношения интенсивностей ICu2O/ICu участка 1 больше величины участка 2 в два и более раз, то оплавление образовалось в результате короткого замыкания, возникшего не в условиях пожара. Если величина отношения интенсивностей ICu2O/ICu участка 1 меньше величины участка 1 в два и более раз, то оплавление образовалось в результате короткого замыкания, возникшего в процессе пожара.

Металлографический анализ

Данный анализ проводится после рентгеноструктурного, он более информативен и позволяет более точно и наглядно установить условия, в которых произошло короткое замыкание. Металлографическое исследование проводов — более трудоемкий метод анализа, нежели рентгеноструктурный. Кроме того, это разрушающий метод (в отличие от неразрушающего рентгеновского), который ведет к утрате об­разца. В лаборатории исследуемый участок провода (шарик оплавления) заливают в специальный твердеющий состав и делают так называемый «шлиф» на шлифовальном станке.

Установка для приготовления металлографических шлифов

Затем шлиф обрабатывают кислотным составом («травят») для того, чтобы проявилась структура металла, и рассматривают ее с помощью металлографического микроскопа.

Структура оплавления при различных условиях неодинакова. Короткое замыкание в нормальных условиях происходит при относительно низкой температуре окружающей среды, поэтому рост кристаллов меди при охлаждении из расплава происходит в основном в направлении максимального оттока тепла по проводнику, в результате образуется зона вытянутых кристаллов — столбчатых дендритов.

В случае короткого замыкания медных деталей в условиях до пожара с нормальным содержанием кислорода, в месте оплавления наблюдается двухфазная структура-эвтектический сплав Cu + Cu-Cu2O. При этом могут наблюдаться три типа микроструктур:

  • на участке оплавления содержится от 0,05% до 0,39% кислорода – основу сплава составляет медь с участками эвтектики Cu-Cu2O;
  • на участке оплавления содержится 0,39% кислорода – в данном случае сплав состоит сплошь из эвтектики Cu-Cu2O;
  • на участке оплавления содержится более 0,39% кислорода – помимо эвтектики Cu-Cu2O в сплаве появляются кристаллы закиси меди Cu2O.

Отсутствие в атмосфере газов-восстановителей приводит к тому, что газовые раковины и поры в оплавленном участке практически не образуются.

Микроструктура оплавления медного проводника при коротком замыкании в нормальных условиях, то есть не в условиях пожара. (Содержание кислорода более 0,39%, имеются дендриты оксида меди, поры отсутствуют).

При коротком замыкании в условиях пожара (в условиях с пониженным содержанием кислорода, высокой температурой, высоким содержанием газообразных продуктов горения) в месте оплавления медных деталей эвтектика практически не наблюдается, массовая доля кислорода в оплавлении не превышает 0,05%, зерна имеют равноосную форму, образуется большое количество пор.

Исследования электротехнических изделий и проводников на предмет обнаружения следов аварийных режимов работы в испытательной пожарной лаборатории по Республике Мордовия производятся в рамках экспертных исследований по делам о пожарах в соответствии с прейскурантом цен на данный вид деятельности.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector