Avtonova37.ru

Авто мастер
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чем отличается тяговый двигатель тл2к1 от эдп810

Тяговый электродвигатель ЭДП810 электровоза. Назначение, марки и технические характеристики электровозов железных дорог россии Филиал оао «ржд»

ЭЛЕКТРОВОЗ 2ЭС6 — Синара

История

В декабре 2006 года на Уральском заводе железнодорожного машиностроения был построен опытный образец грузового электровоза с коллекторным тяговым приводом 2ЭС6. Летом 2007 года опытный образец 2ЭС6 вышел в самостоятельный рейс с составом из 70 вагонов. Маршрут движения: станция «Свердловск-Сортировочный» — станция «Каменск-Уральский» и обратно (в общей сложности – 190 километров). Локомотив прошел весь маршрут в установленном на магистрали скоростном режиме, на отдельных участках достигая скорости 80 км/час. Также 2ЭС6 прошел высоковольтное опробование на Свердловской железной дороге, по результатам которого специалисты УЗЖМ совместно с работниками депо Свердловск-Cортировочный провели доработку машины. По итогам этих испытаний ОАО «Синара — Транспортные машины» и ОАО «РЖД» подписали контракт на поставку 25 грузовых электровозов.
В 2008 году были завершены сертификационные испытания и электровоз 2ЭС6 получил сертификат соответствия Российского регистра сертификации на федеральном железнодорожном транспорте (РС ФЖТ).
В апреле 2009 года на УЗЖМ запущен первый производственный комплекс, позволяющий выпускать 60 двухсекционных локомотивов нового поколения в год. Электровозы 2ЭС6 производства УЗЖМ эксплуатируются на Свердловской железной дороге.

Технические данные

Грузовой электровоз 2ЭС6 отличается повышенной экономичностью, высокими потребительскими, эксплуатационными и экологическими свойствами. В нем используется целый ряд инженерных решений, которые ранее не применялись в отечественном локомотивостроении, к ним можно отнести микропроцессорные системы управления и безопасности.
Локомотив оснащён кабиной модульной конструкции, современным пультом управления, системой климат-контроля. 2ЭС6 оборудован компьютером, который позволяет оперативно получать необходимую информацию о параметрах движения поезда.
2ЭС6 оборудован комплексной системой диагностики, позволяющей постоянно контролировать работу машины. Локомотив может водить составы повышенного веса (до 8500 тонн), что на 30% больше грузоподъемности ВЛ11), приэто расход электроэнергии снижен по сравнению с ВЛ11 на 10%.
На электровозе снижена трудоемкость ремонта на 15%, а межремонтный пробег увеличен на 50%. Улучшены тяговые и тормозные характеристики электровоза и условия работы локомотивных бригад.

  • 2ЭС6 — грузовой магистральный электровоз постоянного тока
  • Технические характеристики
  • Годы постройки — 2006 — по н.в.
  • Страна постройки — Россия (ОАО «Синара — Транспортные машины», ОАО «Уральский завод железнодорожного машиностроения»)
  • Страна эксплуатации — Россия
  • Осевая формула — 2(2о-2о)
  • Система тока — постоянный, 3 кВ
  • Часовая мощность ТЭД — 6440 кВт
  • Длительная мощность ТЭД — 6000 кВт
  • Конструкционная скорость — 120 км/ч
  • Сцепной вес — 192 т

Краткое описание конструкции электровоза

Создание электровозов нового поколения предполагает использование экипажной части с унифицированными двухосными тележками, в которых колесные пары имеют возможность радиальной установки при прохождении кривых участков пути. Новые локомотивы, наряду с коллекторными тяговыми двигателями (ТД), должны оснащаться унифицированным бесколлекторным поосно-регулируемым тяговым, а также вспомогательным приводами с экономичными и надежными полупроводниковыми преобразова­телями, созданными на современной электронной базе.
Повышение потребительских свойств перспективного подвижного состава должно достигаться обеспечением современных требований в области эргономики, санитарно-гигиенических и экологических условий. Важную роль играют также значительное увеличение межремонтного пробега, применение надежных неремонтируемых узлов и агрегатов, организация ремонта с учетом фактического технического состояния по результатам диагностики и др.
Примером такого подхода к проектированию новых машин могут служить магистральные грузовые электровозы 2ЭС4К производства ОАО «Новочеркасский электровозостроительный завод» (НЭВЗ) и 2ЭС6, выпущенные ОАО «Уральский завод железнодорожного машиностроения» (УЗЖМ). Они предназначены для эксплуатации на участках, электрифицированных на постоянном токе напряжением 3000 В, со скоростями движения до 120 км/ч. Эти локомотивы заменят грузовые электровозы серий ВЛ10 и ВЛ11 (всех индексов). Новые локомотивы способны работать в составе одной, двух, трех или четырех секций по системе многих единиц. Электровоз постоянного тока, построенный на УЗЖМ, первоначально получил название 2ЭС4К. В 2007 г. для отличия от машин, выпускаемых НЭВЗом, ему была присвоена серия 2ЭС6 .

Новый двухсекционный электровоз формируют из двух одинаковых головных секций, трехсекционный — из двух головных и прицепной секции. Третья, средняя секция, не оборудована кабиной управления и имеет двери по торцам кузова. Четырехсекционный локомотив может формироваться из двух двухсекционных электровозов или из двух головных и двух прицепных средних секций без кабин управления.

Тележки электровозов НЭВЗа и УЗЖМ — двухосные, бесчелюстные. Рессорное подвешивание — двухступенчатое из спиральных цилиндрических пружин с суммарным статическим прогибом на 130 мм и демпфированием колебаний каждой ступени гидравлическими амортизаторами.

Кузов и тележки связаны между собой в вертикальном и поперечном направлениях упругими и демпфирующими элементами. Во второй ступени рессорного подвешивания применены пружины типа «Флексикойл». Поперечное и продольное усилия от букс колесных пар передаются через упругие связи. Рама кузова воспринимает тяговое усилие от тележки через наклонную тягу.
Тяговая передача электровоза 2ЭС6 № 001 (УЗЖМ) — двухсторонняя косозубая, с моторно-осевыми подшипниками качения.
Независимое питание обмоток возбуждения ТД обеспечивает управляемый статический преобразователь с мощностью в часовом режиме 25 кВт на два ТД. Применение статического преобразователя на электровозе постоянного тока позволяет использовать схему силовых цепей с независимым питанием обмоток возбуждения двигателей во всех режимах (тяга, рекуперация и реостатное торможение). Становится возможным существенно улучшить тяговые свойства локомотива, повысив жесткость характеристик. Одновременно уменьшается число аппаратов в силовых цепях, упрощается переход электровоза из моторного режима в тормозной и обратно.
В качестве реверсоров использованы трехпозиционные переключатели, позволяющие наряду с реверсированием отключать неисправные ТД. При повреждении статического преобразователя и на маневровых передвижениях ТД можно переключать на последовательное возбуждение.
После того как э.д.с. ТД станет выше напряжения в контактной сети, обеспечивается автоматический переход в режим рекуперативно-реостатного или реостатного торможения при помощи блока полупроводниковых вентилей. Достоинством электрической схемы является возможность плавного регулирования тока возбуждения в режимах тяги, рекуперации и электрического торможения, что позволяет в значительной степени улучшить динамику при движении поезда.
В контур каждой пары обмоток возбуждения ТД введены быстродействующий контактор и реактор, которые также включены и в цепь обмоток якоря. Использование реактора в цепях якорей и возбуждения является принципиальной особенностью электрической схемы электровоза 2ЭС6. Это решение обеспечивает обратную динамическую связь по току якоря для магнитного потока ТД. Кроме того, существенно улучшаются качество переходных процессов при колебаниях напряжения и аварийных режимах, а также эффективность защиты двигателей при коротких замыканиях.
Перегруппировка ТД осуществляется при помощи электропневматических контакторов и полупроводниковых вентилей без разрыва силовой цепи и провала силы тяги. Реверсирование тяговых двигателей достигается переключением обмоток якорей.
На электровозе 2ЭС6 применена микропроцессорная система управления (МСУЛ), которая управляет тяговым приводом, вспомогательными машинами и другими системами, обеспечивающими безопасное и экономичное ведение поезда. На новых локомотивах предусмотрены режимы ручного и автоматического пуска до ходовых позиций последовательного и параллельного соединений ТД в зависимости от тока с уставкой, выбираемой машинистом.
Система МСУЛ обеспечивает защиту двигателей от перегрузки, боксования и юза, автоматическое включение реостатного торможения после превышения заданного уровня напряжения в контактной сети в режиме рекуперативного торможения и отображает на пульте машиниста информацию о работе электрического оборудования всех секций.
Электровоз оснащается аппаратурой бортовой диагностики, объединенной с МСУЛ и контролирующей состояние электрического оборудования. Электронное оборудование имеет свою встроенную систему контроля и диагностики.

Читать еще:  Что может быть с двигателем если ездить без масла


Локомотив 2ЭС6 оборудовали трехфазными асинхронными вспомогательными двигателями с короткозамкнутым ротором, которые получают питание от одного из статических преобразователей. От второго преобразователя питаются цепи управления и другие низко­вольтные потребители, а также заряжается аккумуляторная батарея.
Для охлаждения ТД применили осевые вентиляторы (один на тележку), для отвода тепла от пуско-тормозных резисторов — вентиляторы с автоматическим регулированием частоты вращения в зависимости от тока в цепи ТД. На каждой секции установлен компрессор винтового типа.

Тяговый электродвигатель ЭДП810 электровоза 2ЭС6

Электродвигатель ЭДП810 постоянного тока независимого возбуждения устанавливается на тележках электровоза 2ЭС6 и предназначен для тягового привода колесных пар.

Технические характеристики электродвигателя ЭДП810

Основные параметры для часового, продолжительного и предельного режимов работы тягового электродвигателя приведены в таблице 1.1.

Это довольно большая работа; в ней 75 страниц текста, 15 рисунков; приложены 4 чертежа в программе Компас. Обычно задают не полностью двигатель, а какой-нибудь его узел. Если вам так задали — можно сократить данную работу, либо воспользоваться нашими работами d_3.2 — d_3.5

1 Краткая характеристика тягового двигателя ТЛ-2К1
1.1 Назначение тягового двигателя ТЛ-2К1

Тяговый электродвигатель постоянного тока ТЛ-2К1 (рис.1) предназначен для преобразо­вания электрической энергии, получаемой из контактной сети, в механическую. Вращающий момент вала якоря электродвигателя передается на колесную пару через двустороннюю одноступенчатую цилиндрическую косозубую передачу. При такой передаче подшипники электродвигателя не получают добавочных нагрузок по аксиальному направлению.


Рисунок 1 – Общий вид тягового электродвигателя ТЛ-2К1

Подвешивание электродвигателя опорно-осевое. С одной стороны он опирается моторно-осевыми подшипниками на ось колесной пары электровоза, а с другой — на раму тележки через шар­нирную подвеску и резиновые шайбы. Тяговый электродвигатель имеет высокий коэффициент использования мощности (0,74) при наибольшей скорости электровоза. Возбуждение электродвигателя в тяговом режиме — последовательное, а в рекуперативном — независимое.
Система вентиляции независимая, аксиальная, с подачей вентилирующего воздуха сверху в коллекторную камеру и выбросом вверх с противоположной стороны вдоль оси электродвигателя.

1.2 Технические данные электродвигателя ТЛ-2К1

Технические данные электродвигателя ТЛ-2К1 следующие:

  • Напряжение на зажимах электродвигателя, В. 1500
  • Часовой режим
    Ток, А. 480
    Мощность, кВт. 670
    Частота вращения, об/мин. 790
    К. п. д. 0,931
  • Продолжительный режим
    Ток, А. 410
    Мощность, кВт. 575
    Частота вращения, об/мин. 830
    К. п. д. 0,93
  • Класс изоляции по нагревостойкости:
    обмотки якоря. В
    полюсной системы . F
  • Наибольшая частота вращения при среднензношенных бандажах,
    об/мин . 1690
  • Передаточное отношение. 88/23
  • Сопротивление обмоток при температуре 20°С, Ом:
    главных полюсов. 0,025
    дополнительных полюсов и компенсационных катушек. 0,0356 якоря. 0,0317
  • Количество вентилирующего воздуха, м3/мин, не менее. 95
  • Масса без шестерни, кг. 5000

1.3 Конструкция тягового электродвигателя ТЛ-2К1

Тяговый электродвигатель ТЛ-2К1 состоит из остова 3 (рис. 2), якоря 6, щеточного аппарата 2 и подшипни­ковых щитов 1, 4. Остов представляет собой отливку из стали марки 25Л-П цилиндрической формы и служит одновременно магнитопроводом. К нему прикреплены шесть главных и шесть дополнительных полюсов, поворотная траверса с шестью щеткодержателями и щиты с роликовыми подшипниками, в которых вращается якорь электродвигателя.
Установку подшипниковых щитов производят в такой последовательности: собранный остов с полюсными и компенсационными катушками ставят стороной, противоположной коллектору, вверх. Индуктивным нагревателем нагревают горловину до температуры 100—150°С, вставляют и крепят щит восемью болтами М24 из стали 45. Затем поворачивают остов на 180°, опускают якорь, устанавливают траверсу и аналогично описанному выше вставляют другой щит и крепят его восемью болтами М24. С наружной поверхности остов имеет два прилива для крепления букс моторно-осевых подшипников, прилив и съемный кронштейн для подвешивания электродвигателя, предохранительные приливы для транспортировки. Со стороны коллектора имеются три люка, предназначен­ных для осмотра щеточного аппарата и коллектора. Люки герметично закры­ваются крышками 7, 11, 15 (см. рис. 2).


Рисунок 2 – Продольный (а) и поперечный (б) разрезы тягового электродвига­теля ТЛ-2К1

Крышка 7 верхнего кол­лекторного люка укреплена на остове специальным пружинным замком, крышка 15 нижнего люка одним болтом М20 и специальным болтом с цилиндрической пружиной, а крышка 11 второго нижнего люка — четырьмя болтами M12. Для подвода воздуха со стороны, противоположной коллектору, через специальный кожух 5, укрепленный на подшипниковом щите и остове. Выводы из электродвигателя выполнены кабелем марки ППСРМ-1-4000 площадью сечения 120 мм2. Кабели защищены брезентовыми чехлами с комбинированной пропиткой. На кабелях имеются ярлычки из полихлорвиниловых трубок с обозначением Я, ЯЯ, К и КК. Выводные кабели Я и ЯЯ (рис. 3) соединены с обмотками якоря, дополнительных полюсов и с компенсационной, а вывод­ные кабели К и КК соединены с обмотками главных полюсов

Фрагмент работы с оформлением в формате PDF можно посмотреть ЗДЕСЬ

В комплект входит чертеж тягового двигателя ТЛ-2К1 электровоза ВЛ-10 на формате А1 в программе «Компас» (формат CDW), а также отдельные чертежи МОП, траверсы, щеткодержателя.

Описание

Тяговый электродвигатель постоянного тока ЭК-235, ЭК-260. Двигатель асинхронный тяговый с короткозамкнутым ротором ДАТ-170. Электродвигатель тяговый постоянного тока ДК-263 ВМ, ДТК-800Ч, ЭДУ-133ПЧ, ЭДУ-133ЦЧ, ЭК-810Ч, 810А

Подробное описание:

Электрооборудование для железнодорожного транспорта.

Тяговый электродвигатель постоянного тока ЭК-235 предназначен для привода колесных пар электропоездов с напряжением 3000 В в контактной сети. Электродвигатель прошел испытания на федеральном железнодорожном транспорте и получил сертификат соответствия №ССФЖТ RU.ЦТ03.А.03135. Двигатель представляет собой четырех полюсную машину постоянного тока последовательного возбуждения.
Номинальный режим работы двигателя — S2-60 мин.
Вид климатического исполнения — У1 по ГОСТ 15150.
Способ охлаждения двигателя — IC11 по ГОСТ 20459.
Конструктивное исполнение двигателя по способу монтажа — IM 9203 по ГОСТ 2479

Мощность, кВт 235

Напряжение на выводах, В 750

Частота вращения номинальная, об/мин 1250

Электродвигатель тяговый постоянного тока типа ЭК-260 предназначен для привода колесных пар электропоездов с напряжением 3000 В в контактной сети. Двигатель надежно работает в рабочем диапазоне токов при изменении напряжения в контактной сети в пределах от 2200 до 4000 В, так же устойчиво работает в режиме рекуперативного торможения при напряжении контактной сети до 4000 В в режиме реостатного торможения с независимым возбуждением и самовозбуждением.
Номинальный режим работы двигателя — S2-60 мин.
Вид климатического исполнения — У1 по ГОСТ 15150.
Способ охлаждения двигателя — IC11 по ГОСТ 20459.
Конструктивное исполнение двигателя по способу монтажа — IM 9203 по ГОСТ 2479.
Степень защиты двигателя — IP12 и IP54 для коллекторных люков по ГОСТ 17494.
Номинальные рабочие значения механических ВВФ — по ГОСТ 17516.1 для группы механического исполнения М26

Мощность, кВт 260

Напряжение, В 1500

Номинальная частота вращения, об/мин 1270

Двигатель асинхронный тяговый с короткозамкнутым ротором ДАТ-170 с питанием от преобразователя частоты с инвертором напряжения с широтно-импульсной модуляцией, предназначен для установки на головных и промежуточных вагонах метрополитена моделей 81-720.1/721.1,81-740.1/741.1.
Вид климатического исполнения двигателя — У2 по ГОСТ 15150.
Способ охлаждения двигателя — IC01 по ГОСТ 20459.
Конструктивное исполнение по способу монтажа — IM 9703 по ГОСТ 2479.
Номинальные рабочие значения механических ВВФ — по ГОСТ 17516.1 для группы механического исполнения М26.
Степень защиты двигателя — IP20 по ГОСТ 17494, степень защиты кабельного ввода — IP54 по ГОСТ 14254.
Двигатель в части стойкости к воздействию специальных сред соответствует требованиям ГОСТ 24682.
Уровень индустриальных радиопомех, создаваемым двигателем, соответствует нормативам, установленным ГОСТ 29205.

Читать еще:  Черный дым при запуске холодного двигателя ваз

Номинальная мощность, кВт 170

Линейное напряжение, В 530

Синхронная частота вращения, об/мин 1290

Максимальная частота вращения, об/мин 3600

Электродвигатель тяговый постоянного тока ДК-263 ВМ предназначен для привода колес путевых машин на железнодорожном ходу. Двигатель, поставляемый для путевых машин ТЭУ-400, в отличие от поставляемого для других путевых машин, комплектуется крышкой коллекторного люка с прямоугольным отверстием размерами 110х120 мм для подвода охлаждающего воздуха.
Номинальный режим работы кратковременный (S2) с длительностью периода 60 мин. и продолжительный (S1). При этом в режиме S1 двигатель работает при условии дополнительного принудительного охлаждения.
Вид климатического исполнения — УХЛ2, Т2 по ГОСТ 15150.
Способ охлаждения двигателя — IC11 по ГОСТ 20459.
Конструктивное исполнение двигателя по способу монтажа — IM 1103 по ГОСТ 2479.
Степень защиты — IP 20 по ГОСТ 17494.
Номинальные рабочие значения механических ВВФ — по ГОСТ 17516.1 для групп механического исполнения двигателя ДК-263ВМ — М26

Мощность, кВт: S2 52, S1 62

Электродвигатель тяговый постоянного тока ДТК-800Ч, предназначенный для привода колесных пар магистральных пассажирских электровозов постоянного тока типа ЭП2К с номинальным напряжением контактной сети 3 кВ.
Климатическое исполнение — У, категория размещения — 1 по ГОСТ 15150.
Двигатель имеет опорно-рамное подвешивание и используется в составе механического привода третьего класса с односторонней передачей момента на тяговый редуктор прямозубной шестерней, установленной на его валу.
Двигатель надежно работает в диапазоне изменения напряжения на токоприемнике электроподвижного состава от 2,2 до 4,0 кВ по ГОСТ 6962.
Степень защиты двигателя — IPX5 по ГОСТ 17494, исключающая проникновение внутрь двигателя влаги и пыли в количествах, опасных для его работы, а также моющей жидкости при механизированной обмывке ходовой части электровоза.

Мощность, кВт 800

Электродвигатели тяговые постоянного тока ЭДУ-133ПЧ, ЭДУ-133ЦЧ предназначены для привода колесных пар магистральных и маневровых тепловозов.
Вид климатического исполнения двигателей — УХЛ1 по ГОСТ 15150.
Обозначение двигателя при его заказе:
— для двигателя с опорно-осевым подвешиванием с польстерной системой смазки для тепловоза ТЭМ18(ДМ): «Электродвигатель тяговый ЭДУ-133ПЧ ТУ16-2012 ДИЖЦ.652341.001ТУ, ДИЖЦ.652341.001».
— для двигателя опорно-осевым подвешиванием с польстерной системой смазки для тепловозов ТЭМ9, ТЭМ7А: «Электродвигатель тяговый ЭДУ-133ПЧ ТУ16-2012 ДИЖЦ.6552341.001ТУ, ДИЖЦ.652341.001-01».
— для двигателя с опорно-осевым подвешиванием с циркуляционной системой смазки: «Электродвигатель тяговый ЭДУ-133ЦЧ ТУ16-2012 ДИЖЦ.652341.001ТУ, ДИЖЦ.652341.002».
Режим работы двигателей — продолжительный S1 по ГОСТ Р 52776.
Возбуждение двигателей — последовательное. Питание осуществляется от генератора постоянного тока, находящегося на тепловозе или от трехфазного выпрямителя без сглаживающих устройств.
По габаритно-присоединительным размерам и по электромеханическим характеристикам двигателя взаимозаменяемы с двигателями ЭДУ-133 производства ООО «ЭТМ-Привод» (г. Лысьва) и ЭД133 производства ГП «Электротяжмаш» (г. Харьков) соответствующего исполнения.

Мощность номинальная в продолжительном режиме, кВт 414

Электродвигатели тяговые постоянного тока ЭК-810Ч, 810А предназначены для привода колесных пар грузовых электровозов постоянного тока с номинальным напряжением в контактной сети 3 кВ.
Климатическое исполнение — У, категория размещения -1 по ГОСТ 15150.
По габаритно-присоединительным размерам и по электромеханическим характеристикам электродвигатели должны быть взаимозаменяемы с электродвигателями ЭДП-810 производства ГП «Электротяжмаш» (г. Харьков), СТК-810 производства ОАО «Смелянский электромеханический завод» при установке на один электровоз.
Электродвигатели сохраняют работоспособность при изменении номинального напряжения в соответствии с ГОСТ 6962.
Электродвигатели выдерживают внезапное исчезновение и восстановление питающего напряжения.

Технические характеристики электровоза:

  • Вместимость 10 вагонов — 1050 чел
  • Высота — 4268 мм
  • Длина — N × 20 180 мм
  • Ширина — 3480 мм
  • Колея — 1520 мм
  • Конструкционная скорость — 130 км/ч
  • Минимальный радиус прохождения кривых — 120 м
  • Мощность ТЭД (длительная) — N × 4×200 кВт (800 кВт)
  • Тип ТЭД — коллекторные, ДК-106Б или УРТ-110
  • Род тока — постоянный (3 кВ)
  • Служебная масса — 2×41 т (82 т) (головной), N×54,6 т (моторный) и N×38,3 т (прицепной)
  • Составность — 4, 6, 8, 10 и 12 вагонов

Двигатель тяговый постоянного тока типа ДК812 для рудничных электровозов

Общие сведения

Двигатель предназначен для 14-тонных рудничных контактных электровозов типов К14, К14М, 14КР. По установочным и присоединительным размерам аналогичен двигателю ДТН45.

Структура условного обозначения

ДК812 Х5:
ДК — двигатель коллекторный постоянного тока;
812 — порядковый номер;
Х5 — климатическое исполнение (У, УХЛ, Т) и категория
размещения 5 (в шахтах с повышенной влажностью и
запыленностью) по ГОСТ 15150-69.

Условия эксплуатации

Двигатели предназначены для работы в следующих условиях:
номинальные значения климатических факторов внешней среды по ГОСТ 15150-69 и ГОСТ 15543.1-89, при этом:
расположение над уровнем моря от минус 1500 до 2000 м;
температура окружающего воздуха от минус 40 до 40°С;
относительная влажность воздуха окружающей среды до 98±2% при температуре 35±2°С;
окружающая среда невзрывоопасная, с повышенной запыленностью не более 300 мг/м 3 .
В части воздействия механических факторов двигатель соответствует группе условий эксплуатации М27 по ГОСТ 17516.1-90.
Требования безопасности по ГОСТ 12.2.007.0-75 и ГОСТ 12.2.007.1-75.
Двигатель соответствует ТУ 16-93 ИРАК.6524.11.008 ТУ.

Нормативно-технический документ

ТУ 16-93 ИРАК.6524.11.008 ТУ

Технические характеристики

Двигатель имеет два номинальных режима работы: S2 (часовой) и S1 (продолжительный).

Частота вращения, мин -1 :

Момент вращения, Н·м




Масса, кг, не более

Конструктивное исполнение двигателей по способу монтажа — М9403 по ГОСТ 2479-87.
Подвеска двигателя на электровозе — осевая, с прифланцовкой к картеру редуктора, расположенного на оси электровоза. Второй своей стороной двигатель может быть подвешен на раме электровоза двумя способами: либо при помощи кронштейнов, расположенных по обеим сторонам верхней части корпуса, либо при помощи оси, проходящей через отверстие диаметром 60 мм в нижнем прямоугольном кронштейне двигателя.
Двигатель имеет круглый стальной корпус. С двух сторон корпус закрыт подшипниковыми щитами, которые вместе с крышками образуют подшипниковые камеры. Для переднего подшипникового щита предусмотрена возможность небольшого поворота для регулирования установки щеткодержателей на нейтрали. В верхней части корпуса расположена коробка выводов с четырьмя уплотненными отверстиями для подводящих проводов.
В задней части корпуса имеется фланец для сочленения двигателя с редуктором. В нижней части этого фланца выполняются два радиальных канала, которые выравнивают давление воздуха у камеры заднего подшипника с атмосферным, что предотвращает выдавливание смазки из камеры подшипника внутрь двигателя. Для защиты двигателя от масла редуктора применяются специальные уплотнения.
Для двигателя применяются разрезные щетки, состоящие из двух частей, имеющих общие жесткую и резиновую накладки и общий наконечник медных проводов. Жесткая накладка, выполненная из профильного стеклопластика, имеет специальный желоб, обеспечивающий установку пружины по центру щетки. На каждом щеткодержателе устанавливается по две щетки, марка щеток — ЭГ841. По результатам стендовых и эксплуатационных испытаний эти щетки имеют стабильные характеристики, обеспечивают широкую безыскровую зону и высокую износоустойчивость.
Изоляция двигателей соответствует уровню 1 по ГОСТ 24719-81 и выполняется на напряжение 500 В. Исполнение катушек главных и добавочных полюсов — монолитное, класс нагревостойкости изоляции F. Для якоря двигателя применена изоляция класса нагревостойкости Н.
Обмотка якоря волновая. В пазовой части обмотка крепится клиньями, на лобовых частях — стеклобандажами, выполненными из стеклянной ленты ЛСБ-F или ЛСБ-Н.
Коллектор арочного типа имеет сборную конструкцию. Основание его — стальное, с креплением кольцевой гайкой. Коллекторные пластины изготовлены из профильной меди, легированной кадмием (НД Бр Кд 1, ГОСТ 4134-75), что обеспечивает коллектору большую твердость и расширенный диапазон рабочих температур.
В двигателе применены подшипники: со стороны коллектора — роликовый, № 30-32310АЛ1; со стороны привода — шариковый № 80-413,

ТУ 37.006.049-73.
Степень защиты двигателя IP54 по ГОСТ 14254-80 с учетом встраивания в электровоз.
Исполнение двигателя по способу охлаждения 1С01 (самовентиляция) по ГОСТ 20459-87. Вентилирующий воздух должен подводиться из пространства, исключающего прямое попадание воды в двигатель.
Охлаждается двигатель при помощи вентилятора, встроенного в двигатель со стороны привода. Вентилятор отливается из высокопрочного алюминиевого сплава и для надежной посадки имеет стальную втулку и сажается на вал со шпонкой. Вентилирующий воздух поступает в двигатель через закрытые специальными фильтрами отверстия в двух верхних крышках коллекторных люков. Выбрасывается воздух со стороны провода через два верхних закрытых сетками отверстия в станине.
Габаритные, установочные и присоединительные размеры двигателя приведены на рисунке.

Габаритные, установочные и присоединительные размеры двигателя типа ДК812
а — вход воздуха; б — выход воздуха; d — 7 отв. Ж 22 ¦

В комплект поставки входят: двигатель, комплект запасных частей, состоящий из 8 щеток, эксплуатационные документы (паспорт по эксплуатации), техническое описание и инструкция.

В 2001 году Челябинский электровозоремонтный завод произвел модернизацию одной секции электровоза ВЛ10-523 и ВЛ10-1867, переоборудовав их в односекционные двухкабинные локомотивы ВЛ10П для вождения пассажирских составов. При этом у модели ВЛ10П-523-1 осталась оригинальная кабина базового электровоза ВЛ10. А Модель ВЛ10П-1867-1 получала обновленную кабину, используемую на версиях ВЛ10К. Одна из моделей была списана в 2012 году, а вторая – годом позже.

В 2010 году Челябинский электровозоремонтный завод провел модернизацию локомотивов ВЛ10. Изменения коснулись кабины и силовой схемы. Контроллер машиниста был заменен на электронную систему управления тягой, созданную на базе телемеханической системы многих единиц. А на смену групповым переключателям пришли индивидуальные контакторы. Контакторы работали по принципу вентильного перехода с соединения на соединение тяговых моторов ВЛ10. Электровоз получил возможность работы в 2, 3 и 4 секциях, с гибким изменением соединения тяговых двигателей. Что касается механической части, вспомогательных машин и тяговых двигателей, то они практически не изменились.

Виды передач

Основной трудностью при попытках соединить вал дизеля напрямую с колёсными парами является разгон тепловоза и запуск дизеля. Делались попытки применить для этого сжатый воздух (то есть дизель при трогании с места работал как пневматический двигатель), однако запасов сжатого воздуха в баллонах не хватало для нормального разгона локомотива.

Механическая передача

Механическая передача включает фрикционную муфту и коробку передач с реверс-редуктором; она обладает малым весом и высоким КПД, однако при переключении передач неизбежно возникают рывки. На практике её используют на локомотивах малой мощности (мотовозах), дизель-поездах, дрезинах и автомотрисах.

Электрическая передача

Более эффективной передачей стала электрическая, при которой вал дизеля вращает якорь тягового генератора, питающего тяговые электродвигатели (ТЭД). В свою очередь вращательное движения якоря ТЭД передаётся колёсной паре с помощью осевого редуктора. Редуктор представляет собой соединённые зубчатые колёса, располагающиеся на якоре ТЭД и оси колёсной пары. В случае электропередачи поддерживается гиперболическая тяговая характеристика, когда увеличение сопротивления движения вызывает увеличение силы тяги, а уменьшение — ускорение локомотива. Электропередача позволяет соединять несколько секций тепловоза и управлять ими по системе многих единиц из одной кабины. Минусом её является большая масса и относительная дороговизна необходимого оборудования. В случае электропередачи возможно использование электродинамического торможения, суть которого заключается в использовании ТЭД в качестве генераторов, за счёт сопротивления вращению вала якоря которых осуществляющих торможение тепловоза (вырабатываемая электроэнергия гасится в тормозных резисторах). По сравнению с пневматическими тормозами электродинамическое торможение более эффективно, меньше износ тормозных колодок, снижается опасность юза колёсных пар.

Первоначально в тепловозах использовалась передача постоянного тока, однако в дальнейшем (в СССР это был конец 1960-х годов) передачу стали постепенно переводить на переменный ток. Первоначально на переменном токе стал работать генератор, после которого ток всё же выпрямлялся с помощью выпрямительной установки, далее поступая на ТЭД постоянного тока. В СССР первыми серийными тепловозами с передачей переменно-постоянного тока стали грузопассажирский экспортный ТЭ109, пассажирский ТЭП70 и грузовой 2ТЭ116.

Первый в мире тепловоз с асинхронными ТЭД переменного тока был построен компанией Brush Traction, а первым отечественным опытом использования асинхронных ТЭД стал опытный тепловоз ВМЭ1А. Особенностью использования асинхронных ТЭД является необходимость управления частотой их вращения для получения необходимой характеристики. В 1975 году в СССР на базе тепловоза ТЭ109 был построен опытный тепловоз ТЭ120 с электрической передачей переменного тока, где и генератор, и ТЭД использовали переменный ток. Электрической передачей переменного тока оснащён современный отечественный маневровый тепловоз ТЭМ21.

Использование генераторов и ТЭД переменного тока позволяет увеличить их мощность, а также снизить массу, повысить надёжность эксплуатации и упростить их обслуживание. Использование асинхронных тяговых двигателей, ставшее возможным после появления полупроводниковых тиристоров, значительно снижает возможность боксования тепловоза, что позволяет уменьшить массу локомотива, сохраняя его тяговые свойства. Даже в случае использования промежуточного выпрямительного блока применение генератора переменного тока и асинхронных ТЭД оказывается экономически оправданным. Передачи постоянного тока отличаются сравнительной простотой конструкции и продолжают использоваться на тепловозах мощностью до 2000 л. с.

Гидравлическая передача

В гидравлической передаче механическая энергия вала дизеля передаётся колёсной паре с помощью гидравлического оборудования (гидромуфт и гидротрансформаторов). В общем виде гидравлическое оборудование представляет собой комбинацию насосного колеса, связанного с валом двигателя, и турбинного колеса, соединённого с осью колёсной пары. Насосное и турбинное колесо находятся на небольшом расстоянии друг от друга, а промежуток между ними заполнен жидкостью (маслом), передающей энергию вращения насосного колеса турбинному. Регулировка передаваемого крутящего момента осуществляется изменением количества рабочей жидкости (масла) на лопатках насосного и турбинного колеса. Гидравлическая передача легче, чем электрическая, не требует расхода цветных металлов, но обладает меньшим КПД. В СССР применялась главным образом на маневровых тепловозах, а также на магистральных тепловозах малой мощности (ТГ102, ТГ16, ТГ22).

Делались также попытки создания тепловоза с воздушной и газовой передачей, однако они были признаны неуспешными.

Пульт машиниста маневрового тепловоза ЧМЭ3

Данное оборудование должно обслуживаться, согласно требованиям, предусмотренным нормативной документацией и заводом-изготовителем.

Уход за трансформаторами возложен на членов локомотивной бригады. Они обязаны:

  • контролировать уровень и температуру масла;
  • проверять характеристики работы агрегата, состояние уплотнений, не допуская утечек масла;
  • переключать оборудование на зимний и летний режимы работы;
  • выполнять доливку масла;
  • осуществлять другие функции, обеспечивающие безаварийную работу оборудования.

Ремонт должен производиться в рамках, предусмотренных системой ТОиР, с привлечением квалифицированного и аттестованного персонала. Периодичность проведения ремонтов определяется отработанными агрегатом моточасами.

Без указанного оборудования невозможна работа подвижного состава железнодорожного и внутригородского электротранспорта. Но для нормальной эксплуатации агрегатов, должен быть организован надлежащий уход, техническое обслуживание, проведение текущих и капитальных ремонтов в рамках, установленных рекомендациями изготовителя и требованиям государственных нормативных документов.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
S2S1
4535
13001480
333225
210162
8687,5
последовательное