Avtonova37.ru

Авто мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чем приклеить радиатор на драйвер шагового двигателя

Обзор драйвера шагового двигателя A4988

Автор: Сергей · Опубликовано 11.04.2019 · Обновлено 13.04.2020

Сегодня расскажу о драйвере A4988, данный драйвер подойдет тем, кто планирует создать свой собственный 3D-принтер или станок ЧПУ с управлением шаговым двигателям.

Технические параметры

► Напряжения питания: от 8 до 35 В
► Установка шага: 1, 1/2, 1/4, 1/8, 1/16
► Напряжение логики: 3 В или 5.5 В
► Защита от перегрева: Есть
► Максимальный ток на фазу: 1 А без радиатора, 2 А с радиатором.
► Габариты модуля: 20 мм х 15 мм х 10 мм
► Габариты радиатора: 9 мм х 5 мм х 9 мм

Общие сведения о драйвере A4988

Основная микросхема модуля это драйвер от Allegro — A4988, которая имеет небольшие размеры (всего 8 мм х 6 мм), хоть микросхема и маленькая, но она может работать с выходным напряжение до 35 В с током до 1 А на катушку без радиатора и до 2 А с радиатором (дополнительным охлаждением). Для управления шаговым двигателем, необходимо всего два управляющих контакта (по сравнению с L298N необходимо четыре), один используется для управления шагами, второй для управления вращения двигателем.
Драйвер позволяет использовать пять вариантов шага, полный шаг, полшага, четверть шага, восьмой шаг и шестнадцатый шаг.

Распиновка драйвера A4988:
На драйвере A4988 расположено 16 контактов, назначение каждого можно посмотреть ниже:

EN — включение и выключение модуля (0 — включен, 5 В — выключен).
MS1, MS2 и MS3 — выбор режима микро шаг (смотрите таблицу ниже).
RST — сброс драйвера.
SLP — вывод включения спящего режима, если подтянуть его к низкому состоянию драйвер перейдет в спящий режим.
STEP — управляющий вывод, при каждом положительном импульсе, двигатель делает шаг (в зависимости от настройки микро шага), чем быстрее импульсы, тем быстрее вращаться двигатель.
DIR — управляющий вывод, если подать +5 В двигатель будет вращается по часовой стрелке, а если подать 0 В против часовой стрелки.
VMOT & GND — питание шагового двигателя двигателя от 8 до 35 В (обязательное наличие конденсатора на 100 мкФ ).
2B, 2A, 1B, и 1A — подключение обмоток двигателя.
VDD & GND — питание внутренней логики от 3 В до 5,5 В.

Если не планируете использовать вывод RST необходимо подключить его к выводу SLP, чтобы подтянуть его к питанию, тем самым включить драйвер.

Настройка микрошага
Драйвер A4988 может работать микрошаговом режиме, то есть может подавать питание на катушки с промежуточным уровням. Например, если взять двигатель NEMA17 с шагом 1.8 или 200 оборотов, в режиме 1/4, двигатель будет выдавать 800 шагов за оборот
Дня настройки микрошагов, драйвер A4988 имеет три выхода, а именно MS1, MS2 и MS3. Установив соответствующие логические уровни для этих выводов, можно выбрать режим микрошага.

Вывода MS1, MS2 и MS3 в микросхеме A4988 подтянуты резистором к земле, поэтому, если не подключать их, двигатель будет работать в режиме полного шага.

Система охлаждения A4988
При интенсивной работе микросхемы A4988 начинает сильно греется и если температура превысит придельные значение, может сгореть. По документации A4988 может работать с током до 2 А на катушку, но на практике микросхема не греется если ток не превышает 1 А на катушку. Поэтому если ток выше 1 А необходимо устанавливать радиатор охлаждения, который идет в комплекте.

Настройка тока A4988
Перед использованием мотора нужно сделать небольшую настройку, необходимо ограничить максимальную величину тока, протекающего через катушки шагового двигателя и ограничить его превышение номинального тока двигателя, регулировка осуществляется с помощью небольшого потенциометра.
Существует два способа настройки:
1. Замерить ток, для этого возьмем амперметр и подключим его в разрыв любой из обмоток (двигатель должен работать в полношаговом режиме), так же, при настройки ток должен составлять 70% от номинального тока двигателя.
2. Расчет значение напряжения Vref, согласно документации на A4988, есть формула I_TripMax = Vref / (8 × Rs), из которой мы можем получить формулу.

Читать еще:  Устройство и работа системы подачи воздуха в двигатель

Vref = I_TripMax x 8 x Rs

где,
I_TripMax — номинальный ток двигателя
Rs — сопротивление на резисторе.

В моем случаи на драйвере A4988 установлены резисторы Rs = 0,100 Ом (R100), а номинальный ток двигателя 17HS4401 равняется 1,7 А.

Vref = 1,7 х 8 х 0,100 = 1,36 В

Мы рассчитали максимальное значение для двигателя 17HS4401, но при таком напряжение двигатель будет греться в режиме ожидания, необходимо уменьшить это значение на 70%, то есть:

Vref х 0,7 = 0,952 В

Осталось только настроить, берем отвертку и вольтметр, плюсовой шуп вольтметра устанавливаем на потенциометр, а шуп заземления на вывод GND и выставляем нужное значение.

Подключение драйвера шагового двигателя A4988 к Arduino UNO

Необходимые детали:
Arduino UNO R3 x 1 шт.
► Драйвер шагового двигателя A4988 x 1 шт.
► Шаговый двигатель 17HS4401 x 1 шт.
► Комплект проводов DuPont 2.54 мм, 20 см x 1 шт.

Подключение:
Теперь, можно приступить к сборке схемы. Первым делом, подключаем VDD и GND к 5 В и GND на Arduino. Контакты DIR и STEP подключим к цифровым контактам 2 и 3 на Arduino. Подключение шагового двигатель к контактам 2B, 2A, 1A и 1B.

Предупреждение: Подключение или отключение шагового двигателя при включенном приводе может привести к его повреждению.

Затем необходимо подключить контакт RST к соседнему контакту SLEEP, чтобы включить драйвер. Так-же контакты выбора микрошага необходимо оставить не подключенными, чтобы работал режим полный микрошаг. Теперь осталось подключить питание двигателя к контактам VMOT и GND, главное не забудьте подключить электролитический конденсатор на 100 мкФ, в противном случаи при скачке напряжение, модуль может выйти из строя.

Программа:
Теперь можно приступки к программной части и начать управлять шаговым двигателем с помощью драйвера A4988, загружайте данный скетч в Arduino.

Драйвер шарового двигателя своими руками

При желании драйвер для шарового двигателя можно сделать самостоятельно, но при условии покупки необходимого оборудования. Для начала определитесь, какой тип ЩД у вас в руках.

В биполярном устройстве всего две обмотки, поэтому количество отходящих проводов будет четыре. В униполярном двигателе обмоток больше, поэтому и количество выводов соответствующее.

Схема управления биполярным двигателем состоит из нескольких элементов:

  1. Генератор импульсов.
  2. Коммутатор.
  3. Силовые ключи, управляющие обмотками моторов.

Генератор собирается на базе микросхемы 555 по обычной схеме. Каждый импульс, которые выдается генератором, обеспечивает перемещение мотора на один шаг.

Коммутатор собирается на базе микросхемы 4013, а силовая часть — L239D (микросхема-драйвер).

В роли источника питания применяется две батарейки, обеспечивающие напряжение, равное пяти вольтам. После включения питания генератор подает импульсы, частоту которых можно менять с помощью корректировки сопротивления генератора.

В зависимости от применяемой схемы можно использовать реверс или подключать ШД без него.

Для обеспечения реверса собирается такая же цепочка с той разницей, что на выходе из коммутатора можно будет менять полярность на обмотках. Иными словами, при изменении принципа подключения меняется и направление вращения.

В схеме с реверсом применяется два драйвера коллекторных двигателей FAN 8082. После включения ШД можно нажимать переключатель, чтобы вращение шло в другом направлении.

Вместо генератора можно подключить тактовую кнопку, с помощью которой легко избежать дребезга контактных групп. При желании можно даже посчитать число шагов двигателя, если это необходимо.

Особенности первого драйвера L293D (для первой схемы):

  • Напряжение устройства от +5 до +15 В.
  • Размер платы 60х21 мм.
  • Максимальный ток 1,2 А, но на практике при токе больше 0,5 А схема начинает греться.
  • Объединяемые вывода — 4, 5, 12, 13.
Читать еще:  Что лучше заливать в двигатель ваз 2106

Особенности второго драйвера FAN 8082 (для второй схемы):

  • Напряжение устройства от +5 до +15 В.
  • Максимальный ток — 1,6 А.

В отличие от прошлого устройства, этот тип драйвера лучше справляется с нагрузкой. При желании, как отмечалось выше, можно использовать гаситель дребезга контактов.

Ремонт шагового двигателя и драйвера ш.д. в сервисном центре

Сервисный центр «Кернел» предлагает услуги по ремонту промышленной электроники и оборудования такого как шаговые двигатели и драйвера шаговых двигателей. В виду малого ресурсного запаса драйвера ш.д. не редко выходят из строя, обратившись в нашу компанию вы гарантированно получите глубокую диагностику промышленного оборудования, которая покажет причину выхода из строя оборудования и последующий профессиональный ремонт драйвера шагового двигателя в сжатые сроки.

Наш сервисный центр уделяет максимальное внимание на качество исполнения ремонта. Мы производим ремонт шаговых двигателей и драйверов ш.г. на компонентном уровне с использованием только оригинальных запасных частей, мы уверены в качестве выполненных работ и смело даем гарантию на все ремонтные работы 6 месяцев.

Полнофункциональные драйверы шаговых двигателей

Высокоинтегрированные контроллеры шагового двигателя могут значительно сократить объем проектных работ, связанных с применением более мощных шаговых двигателей. Первая полезная особенность, которая приходит на ум – это автоматическая генерация управляющей последовательности, т.е. способность преобразовывать прямые входные сигналы управления двигателем в требуемые последовательности сигналов. Давайте рассмотрим L6208 от STMicroelectronics, в качестве примера.

Вместо логических входов, которые напрямую контролируют ток, подаваемый на обмотки двигателя, L6208 имеет:

  • Вывод, который выбирает между полушагом и полным шагом.
  • Вывод, который задает направление вращения.
  • Вывод «синхроимпульса», который заставляет внутренний конечный автомат управления двигателем меняться на один шаг при появлении фронта сигнала.

Этот интерфейс гораздо более интуитивно понятен, чем фактические последовательности включения и выключения, которые применяются к транзисторам, подключенным к обмоткам (пример которых приведен ниже).

Это последовательность для управления биполярным шаговым двигателем. «A» и «B» относятся к двум обмоткам, а столбцы «Q» указывают состояние транзисторов, управляющих током обмотки.

Похожие статьи

Определение частотных границ шагового двигателя.

Необходимо, определить граничные частоты, при которых происходит плавный, стабильный запуск и вращение ШД, а также частоты срыва, на которой

Драйвер — представляет собой электрическую цепь или другой электронный компонент, предназначенный для преобразования.

Управление шаговым двигателем с использованием.

Ключевые слова: шаговый двигатель, управление, драйвер шагового двигателя, микроконтроллер, Atmel, AVR, ATmega 16, L297, L298N, LabVIEW. В современной технике, в качестве исполнительного устройства для различных систем управления часто используют ШД.

Одноканальное управление шаговым двигателем

Шаговый двигатель может работать в шаговом или полушаговом режиме.

Скорость поворота двигателя изменяется за счет изменения частоты управляющих импульсов.

Ключевые слова: шаговый двигатель, управление, драйвер шагового двигателя.

Моделирование и анализ производительности.

Обеспечение необходимой частоты и напряжения на выходе из ЧРП осуществляется с помощью широтно-импульсной модуляции. Инвертор с широтно-импульсной модуляцией (ШИМ) вырабатывает импульсы различной ширины, которые объединяются для построения.

Подбор параметров преобразователей частоты при испытании.

Посредством преобразователей частоты производят плавный запуск электродвигателей, увеличивая частоту подводимого напряжения одновременно на обоих асинхронных двигателях с помощью преобразователей частоты до ее номинального значения.

Моделирование прямого пуска асинхронного двигателя с ШИМ.

Целью данной работы является овладение технологией сборки модели прямого пуска асинхронного двигателя с ШИМ в пакете SimPowerSystems для использования в лабораторных работах по дисциплинам «Математическое моделирование электромеханических систем» и.

Экспериментальное исследование статических и динамических.

Осреднённые значения измеренных параметров. Режим работы двигателя. Частота вращения ротора, об/мин.

Читать еще:  Что лучше залить в двигатель гольф 2

TJ-100 имеет собственный блок управления двигателем (CPSJ), который осуществляет полный контроль над запуском и работой двигателя.

Математическое моделирование электропривода на базе.

Шаговый двигатель управляется сигналами STEP и DIR, поступающими из блока Signal

В параметрах переключателей Switch1 и Switch2 необходимо установить значение Threshold: 0.5.

Угол поворота на валу шагового двигателя. Примечание: во избежание ошибок при.

Расчёт предпомпажных состояний газотурбинной установки

— недопущение выхода за максимально допустимые значения температуры выхлопных газов и давления на стороне нагнетания компрессора; — защита осевой турбины от завышенного и заниженного расхода топлива и перекрытие подачи топлива в случае срыва пламени

Расчет энергетических параметров пуска асинхронного двигателя.

Рассмотрены основные способы плавного пуска асинхронных двигателей и определены области их применения, определены электрические и энергетические параметры, время переходного процесса во время плавного пуска частотно-регулируемого асинхронного.

Различия между драйверами двигателя DRV8825 и A4988

Оба этих драйвера двигателя предназначены для управления шаговым двигателем Nema 17, имеют похожую распиновку и области применения, но они отличаются в количестве микрошагов, рабочем напряжении и т.д. Ниже приведены следующие ключевые отличия этих модулей драйвера двигателя:

  • модуль DRV8825 поддерживает 6 режимов шага, а модуль A4988 – только 5. Большее число этих режимов означает более равномерное и тихое функционирование шагового двигателя;
  • минимальная длительность шага для DRV8825 составляет 1.9 мкс, а для A4988 – 1 мкс;
  • без дополнительного охлаждения DRV8825 обеспечивает немного больший ток чем A4988;
  • местоположение потенциометра, регулирующего лимит тока, в обоих модулях различно;
  • DRV8825 может быть использован при более высоком напряжении питания;
  • на контакте спящего режима (SLEEP pin) в DRV8825 по умолчанию не установлен режим с подтягивающим резистором как это сделано в A4988;
  • вместо контакта напряжения питания DRV8825 имеет выходной контакт.

Правильная установка и подключение драйверов LV8729

Модуль драйвера LV8729, ток которого меньше 1,5 А, является хорошим выбором для шаговых двигателей 3D принтера и делает их тихими и точными.
Доступные модули производятся двумя компаниями:


MakerBase Technology чип установлен на нижней стороне драйвера


Lerdge Technology чип установлен на верхней стороне драйвера.

Характеристики:

Размеры : 1 , 5 мм * 2 , 0 мм ( одинаковые с A4988 и DRV8825 )
Максимальный ток : 1 , 5 А ( по умолчанию 0 , 8 А )
Рабочее напряжение : 6 В-36 В
Рабочая температура до 85C
Температура отключения 150C
Регулируемый микрошаг : до 128
Процесс производства : четырехслойная плата PCB
Работа шаговиков с микрошагом 64 или 128 имеет ультра-тихий эффект .

Установка и подключение

При установке драйверов LV8729 обратите внимание на правильную ориентацию во избежании выхода из строя электроники 3D принтера.

Так как у двух представленных драйверов расположение чипа отличается, соответственно установка на плату происходит с разными направлениями.

LV8729 от MKS устанавливается направлением подстроечного резистора как TMC2100 и DRV8825.

LV8729 от Lerdge Technology устанавливается на плату резистором по направлению как A4988. Еще важный момент инвертируем направление вращения шаговика (в прошивке или разворачиваем гнездо кабеля шагового двигателя на 180 грд.)

Алгоритм настройки тока у обоих драйверов одинаков:

1. Алгоритм текущего драйвера: i = Vref / 0.5, значение по умолчанию Vref около 0,4 В, поэтому ток по умолчанию 0,8 А и максимальный ток 1,5 А


2. Пожалуйста, НЕ подключайте двигатели при измерении напряжения.
3. При измерении напряжения подключите питание и питание USB.
4. Чтобы увеличить ток, медленно поверните потенциометр по часовой стрелке, а чтобы уменьшить против часовой стрелки.

Эти драйвера работают одинаково превосходно, они ориентированы в основном на 32-х битную электронику, помогут снизить шум шаговых двигателей, цена значительно ниже чем TMC2100. Драйвер LV8729, так же их можно использовать на 8-ми битной электронике на оси Z или управлении подачи нити.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector