Чем турбовинтовой двигатель отличается от турбовентиляторного двигателя - Авто мастер
Avtonova37.ru

Авто мастер
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чем турбовинтовой двигатель отличается от турбовентиляторного двигателя

Турбовинтовой двигатель самолета: устройство и принцип работы

Внешне турбовинтовой двигатель самолета сильно похож на моторы поршневого типа. Но их сходства только визуальны, так как во всем остальном они совершенно отличаются. У данного двигателя совсем другие характеристики, тип и режим работы, также отличаются и их возможности.

ТВД – по сути, являться газотурбинным двигателем, который нашел большой спрос в авиастроении. Газотурбинный двигатель был создан для единственной цели, он должен был стать универсальным преобразователем энергии, благодаря этой особенности он стал использоваться в авиации.

ГТД является своего рода тепловой машиной. В момент сгорания топлива идет выброс газов, которые и вращают турбину, тем самым создают крутящий момент. Также есть возможность прикрепить к валу турбины необходимые дополнения. К ТВД отличным дополнением будет воздушный винт.

ТВД является некой смесью моторов поршневого типа с турбореактивным. Изначально самолеты были оснащены только поршневыми двигателями. Они выглядели как цилиндры и устанавливались в форме звезды, в центре этой звезды ставился вал, благодаря которому и и происходило вращение воздушного винта. Но из-за их низких характеристик и ограничения в скорости было принято решение об отказе от данного двигателя. На замену им как раз пришли турбовинтовые двигатели (ТВД).

Самый первый двигатель был создан в СССР, первые успешные испытания были проведены еще в 30-х годах, ТВД поступили на массовое производство спустя 20 лет. Его почти сразу же начали устанавливать в гражданские и военные самолеты. Что позволило улучшить преимущество в небе.

В связи с уменьшением эффективности воздушного винта при увеличении скорости полёта, турбовинтовые двигатели в основном распространены на относительно малоскоростных летательных аппаратах, таких как самолёты местных авиалиний и транспортные самолёты. Исключение составляет стратегический бомбардировщик Ту-95 и самолеты, созданные на его базе (Ту-114, Ту-126, Ту-142), летающие со скоростью порядка 800 км/ч.

Если учесть, что турбовинтовой двигатель работает только на дозвуковых скоростях, а турбореактивные двигатели лучше использовать для получения очень больших скоростей полёта, то можно сделать вывод, что в некотором диапазоне скоростей комбинирование этих двух двигателей является оптимальным решением (турбовентиляторный двигатель).

Ввиду того, что как лопасти вентилятора, так и лопасти винта для эффективного функционирования должны работать на дозвуковых скоростях, вентилятор в кольцевом обтекателе (который понижает скорость набегающего потока) является более эффективным на больших скоростях.

Экономическая целесообразность [ | ]

Поскольку турбовинтовые двигатели на малых скоростях полёта гораздо экономичнее, чем турбореактивные двигатели, то турбовинтовые самолёты имеют преимущество перед реактивными, прежде всего, из-за низкого расхода топлива. Поэтому в период высоких цен на нефть объём продаж турбовинтовых лайнеров растёт. Так, в 2011 году, когда стоимость нефти была в районе 100 долларов за баррель, в консалтинговом агентстве Ascend Flightglobal Consultancy просчитали, что перевозчикам необходимо задуматься о переходе на турбовинтовые самолёты, поскольку высокая стоимость авиабилетов, связанная с эксплуатацией реактивных лайнеров, отпугивает потенциальных пассажиров.

При этом преимущество турбовинтовых самолётов по сравнению с реактивными на региональных перевозках очевидно. По словам руководства компании Bombardier, лайнеры Q400 (как и соответствующий ему российский Ил-114-300), в сравнении с 70-местным реактивным самолётом эффективнее на 30 % [1] в плане экономии топлива и затрат на эксплуатацию. Соответственно, турбовинтовые самолёты являются идеальной заменой 50-местных реактивных лайнеров. В этом случае авиакомпании смогут увеличить вместимость своих воздушных судов, сохранив затраты на прежнем уровне.

Рабочий вал

Бывают двигатели с одним или двумя валами. В одновальном варианте на одном валу находятся и компрессор, и турбина, и винт. В двухвальном — на одном из них установлены турбина и компрессор, а на другом — винт через редуктор. Здесь же имеются две турбины, связанные друг с другом газодинамическим способом. Одна из них предназначена для винта, а другая — для компрессора. Такой вариант наиболее распространен, так как энергия может применяться без запуска винтов. А это особенно удобно, когда самолет находится на земле.

Турбовентиляторные двигатели ещё покрутятся

Несмотря на общественный запрос на более эффективные и экологически чистые двигатели — и моду на разработки гибридной и электрической тяги, турбовентиляторных «старичков» списывать со счетов ещё очень рано.

За всю историю коммерческой авиации реактивные силовые установки перешли с 20% до 40% общего КПД, и в сообществе разработчиков есть понимание, что планка в 60% вполне может быть взята.

Как обычно, по мере повышения эффективности работы самолёта — двигателя и планера, — каждый новый шаг вперёд становится сложнее.

Термодинамическая эффективность масштабируется с размером двигателя. Большие двигатели эффективнее зачастую потому, что приводят более крупные самолёты, которые — в свою очередь — являются более эффективными. Но чтобы увеличивать эффективность самолёта при его неизменных размерах, нужно уменьшать двигатель. А уменьшение силовой установки снижает её эффективность — в этом и есть сейчас наш главный вызов.

Алан Эпстейн (Alan Epstein), вице-президент по технологиям и окружающей среде Pratt & Whitney, выступление на форуме Американского института аэронавтики и астронавтики (American Institute of Aeronautics and Astronautics) в Атланте

Основные тезисы эволюции турбовентиляторных двигателей

  • Увеличение операционной эффективности на 15-20% считается вполне доступным.
Читать еще:  Чему равна сила заставляющая работать двигатели самолета при разгоне

Pratt & Whitney

Российский магистральный самолёт Irkut MC-21-300 впервые взлетел с аэродрома Иркутского авиазавода при помощи двух Pratt & Whitney PW1400G — эти двигатели будут устанавливаться и серийно, до появления рабочих экземпляров ПД-14

Ключевыми факторами для повышения эффективности силовых установок в Pratt & Whitney видят развитие своей системы редукторного привода (уже реализованной на двигателях семейства PW1000G) и дальнейшее снижение коэффициента компрессии вентилятора, понижающее шумность и расход топлива.

Над второй технологией производитель работает в исследовательском центре NASA в Кливленде, штат Огайо (Glenn Research Center) в рамках программы Continuous Low-Energy, Emissions and Noise (CLEEN) Федерального управления гражданской авиации США (Federal Aviation Administration, FAA), нацеленной на снижение расхода топлива на 33%, эмиссии углекислоты на 60% и уровня шума на 32 дБ — к 2030 году относительно уровня 2000 года.

Safran

До середины 2020-х годов, по ожиданиям французского производителя авиадвигателей Safran, отрасль сохранит текущую траекторию повышения эффективности моторов за счёт увеличения диаметров вентиляторов, повышения степени двухконтурности (соотношения воздуха, обтекающего камеру сгорания, и проходящего сквозь неё) и роста термодинамической эффективности за счёт более высоких рабочих температур. При этом с ростом диаметра вентилятора вырастет и аэродинамическое сопротивление — и с этим ещё предстоит бороться.

В текущей схеме компания видит возможности изыскать ещё плюс 10-15 процентных пунктов общего КПД — а за этой границей считает перемены неизбежными.

Одним из вариантов предлагается концепция propfan, или противовращения с открытым ротором (counterrotating open-rotor, CROR). Несмотря на то, что идея не нова, однако все попытки её реализовать терпели неудачу, специалисты Safran считают, что с достижениями в области моделирования и лёгких высокопрочных материалов их открытый ротор окажется успешным. В настоящее время во французском Истре работает демонстрационный образец CROR, обладающий степенью двухконтурности около 35. И на нём выявлен ряд проблем.

Первая среди них — уровень шума, производимого открытым вентилятором.

В Safran считают, что сумели его преодолеть, доведя то актуальных стандартов, и теперь переходят к тестам элементов управления, вибрации и способов её контроля. Если и эти показатели удастся обуздать без серьёзного вмешательства в конструкцию, то получившийся двигатель будет обладать на 15% большей топливной эффективностью по сравнению с сегодняшними лидерами.

И тогда проявится вторая — ключевая — проблема.

Для использования открытого ротора придётся вносить изменения в конструкцию планера. Готовы ли к этому авиапроизводители и покупатели — авиакомпании?

GE Aviation

Испытания двигателя GEnx-2B67 для Boeing 747-8

General Electric также видит у турбовентиляторного двигателя ещё долгую судьбу.

Придумывая улучшения в термодинамической части, повышая давление компрессоре и температуру в турбине, уменьшая коэффициент сжатия в вентиляторе и расширяя обходной поток, а также облегчая всю конструкцию целиком, в GE вынашивают и более амбициозные решения.

В будущем компания предполагает модифицировать весь цикл и использовать адаптивные циклы — преимущественно, в двигателях для военных самолётов. Производитель изучает концепции движения с усилением давления на основе модифицированного цикла Брайтона и сжигания с постоянным объёмом для силовых установок боевых машин шестого поколения по заказу ВВС США.

Компания также продолжает разрабатывать вращающиеся и статические детали из керамического матричного композита (ceramic matrix composite, CMC), которые способны выдерживать более высокие температуры по сравнению с металлическими и имеют при этом почти в три раза меньшую массу. В дополнение к существующей производственной площадке в Эшвилле (Asheville), штат Северная Каролина, GE инвестирует более 200 миллионов долларов в новый объект в Хантсвилле (Huntsville), штат Алабама, используя в том числе 21,9 миллион долларов ассигнований на научные исследования от ВВС США. Ожидается, что на этих двух объектах будут получены матрицы из кремний-карбидного волокна для массового производства деталей CMC в 2018 году.

В частности, эти наработки будут использованы в двигателях CFM LEAP совместного предприятия GE и французской Safran, для каждого из которых требуется 18 композитных турбинных кожухов, а также в разработке GE9X, который будет использовать новый материал в камере сгорания и для 42 лопаток турбины высокого давления. Ожидается, что к середине 2020 года спрос на композиты вырастет в десять раз.

Повышение температуры в камере сгорания и снижение массы двигателя за счёт применения кремний-карбидных деталей позволит, по расчётам производителя, сократить потребление топлива на 20%.

Rolls-Royce

И британский гигант считает, что у турбовентиляторных двигателей есть хороший потенциал эволюции и роста производительности. И, как и конкуренты, предупреждает, что добиваться положительных результатов становится всё труднее.

Технологический пакет Vision 10 для нового двигателя UltraFan предусматривает редукторный привод вентилятора, степень двухконтурности 15:1 и коэффициент компрессии 70:1.

Читать еще:  Фольксваген с дизельным двигателем когда и что менять

Фундаментальные изменения коснутся конструкции компрессора и турбины. Традиционная архитектура ядра Trent подвергается пересмотру: работа, выполняемая турбиной среднего давления, частично переносится на турбину высокого давления.

Основным архитектурным изменением UltraFan является включение редукторной системы Power Gearbox (PGB), которая будет управлять большим вентилятором с увеличенной степенью двухконтурности и позволит избавиться от турбины и компрессора низкого давления. Конструкторы Rolls-Royce назвали такую конфигурацию «два с половиной вала», при этом коробка приводов весит меньше удаляемых из двигателя компонентов, что позволяет получить заметный суммарный выигрыш в общей массе.

Эволюция двигателей Rolls-Royce: этапы развития идеи отказа от турбины низкого давления с помощью UltraGear

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Особенности производства нового турбовинтового двигателя

В рамках программы импортозамещения Уральский завод гражданской авиации (УЗГА) разработал проект и готовит производство турбовинтового двигателя ВК-800С для самолёта чешского производства L-410UVP-E20, который изготавливают на этом же предприятии. Ранее эта машина была оснащена силовыми установками М601 и Н80, изготовленными в Чехии.

Инженер-конструктор, созданного в Санкт-Петербурге обособленного подразделения по импортозамещению, подтвердил, что в научно-производственном центре «Лопатки.Компрессоры. Турбины.» (НПЦ «ЛКТ») в мае уже будут собраны три опытных мотора ВК-800С, летом начнутся их стендовые испытания, а осенью их тестируют в воздухе.

НПЦ «ЛКТ» выбрано неслучайно для сборки этих силовых установок, поскольку изготовление лопаток турбин и роторного колеса – это и так высокие технологии, а организовать на таком центре дополнительное производство не стало большой проблемой. Поставлена задача добиться использования для производства двигателей ВК-800С комплектующих только из России.

Это становится возможным, поскольку агрегаты и основные узлы для этих моторов стали производить в Омске, Перми, Самаре и других российских городах, где расположены заводы и предприятия соответствующего профиля. Минпромторг уже сделал заказ на производство двух самолётов L-410UVP-E20 с российскими двигателями, а серийный выпуск ВК-800С начнётся сразу после процедуры сертификации, которую планируют закончить в течение двух лет.

Новый турбовинтовой двигатель ВК-800С для лёгких многоцелевых самолётов.

В сущности мотор ВК-800С – это версия вертолётного турбовального двигателя ВК-800В, который был создан в одном из подразделений объединённой двигателестроительной корпорации «ОДК-Климов» и предназначен для многоцелевых самолётов грузоподъёмностью до 1.5 тонны. Это весьма компактный двигатель, имеющий длину около одного метра, весом не более 140 кг и развивающий мощность на взлёте порядка 900 л.с.

Турбины в кулеростроении или шум против комфорта

Турбина! Как много в этом слове необычного, скоростного и относящегося к авиа и космической промышленности. Турбина одновременно проста и обладает большой мощностью, не даром турбореактивные двигатели используются в авиастроении и космической отрасли.

реклама

В компьютерной среде, на ряду с обычными кулерами, оснащенные радиатором и вентилятором, некоторые производители экспериментировали с турбинами и результаты таких экспериментов воплотились в серийные модели. О них мы и поговорим ниже. А пока стоит уточнить что же такое турбина.

Главный принцип работы турбины заключается в проталкивании огромного количества воздуха за короткий промежуток времени. Внутри каждого турбореактивного двигателя как правило находится компрессор и отсек сгорания топлива, который необходим для того, чтобы разогреть входящий поток воздуха начиная от 1500 и до 2000 градусов. Для того чтобы такая конструкция не расплавилась, используются специальные сплавы металлов, которые выдерживает подобные температуры.

реклама

В отличие от турбины в авиастроении, для процессорных кулеров главная задача не разогреть входящий поток, а наоборот мощным потоком воздуха охладить радиатор, который соприкасается с крышкой процессора. Такие кулеры производители начали производить достаточно давно, еще в начале 2000-х годов и ярким примером может служить модель Aero7 от Cooler Master.

Внешний вид кулера очень интересен и необычен. На стандартном радиаторе сверху установлена массивная пластиковая конструкция с турбиной голубоватого цвета, что наряду с медным основанием делает этот кулер неплохим декоративным элементом компьютера. Диапазон вращения данной турбины лежит в пределах от 1900 до 4500 оборотов в минуту. Шум от такого кулера находится на уровне 47.5 дБ.

реклама

Интересным решением также был кулер — Asus StarIce. Хотя он в классическом понимании не являлся турбинным кулером, но по своему строению и принципам работы его можно отнести к таковым.

Смотрелся такой кулер, установленный в материнскую плату монстроузно!

реклама

Скорость оборотов 80 мм крыльчатки лежит в диапазоне 2500 – 4500 об/мин. При низкой скорости вращения вентилятор работает на уровне шума — 47,9 дБ, а при максимальной скорости уровень шума уже поднимается до 62,8 дБ, который вряд ли уже можно назвать терпимым.

Еще CoolerMaster выпускала два кулера серии Jet, модель с индексом 7 и 4.

Обе модели кулера имеют оригинальный дизайн — они похожи на двигатель реактивного самолета. Это вполне объясняет название новой серии систем охлаждения, так как слово «jet» в переводе с английского означает «реактивный самолет». Скорость вращения турбины находится в пределах от 1900 до 3500 об/мин при заявленном уровне шума от 29,3 до 42,6 дБ.

Читать еще:  Во сколько обходится капитальный ремонт двигателя на ваз 2110

Компания Thermaltake также не осталась в стороне и выпустил свой кулер с названием SpinQ, относящийся к турбинному типу. Данный кулер намного современнее, чем ранее рассмотренные выше.

Он совместим с Socket LGA1150, LGA775 и более ранними сокетам. Скорость вращения 80 мм. турбины не велика по отношению к предшествующим экземплярам и лежит в диапазон от 1000 до 1600 об/мин. На максимальных оборотах кулер издает шум на уровне 28 дБ. Это очень хороший показатель для такой конструкции.

Данный кулер имеет красивую голубую подсветку. Интересным с точки зрения дизайна, является турбинное изделие от Gigabyte с необычным названием — 3D Cooler Ultra GT.

Турбина кулера раскручивает от 2000 до 4500 об/мин, создавая шум на уровне от 20 до 45 дБ, что немного шумновато. Кулер также имеет 4 синих светодиода по периметру пластикового кожуха.

Компания Asus, помимо своего кулера для процессоров StarIce, также оснащала свои материнские платы мини-турбинными системами для охлаждения VRM и чипсета в некоторых своих премиальных линейках. Смотрелись такие решения инновационно, но шума издавали много.

Были также и другие реализации данного типа охлаждения у других производителей, но общий принцип работы оставался прежний. Для охлаждения процессоров у турбинных кулеров есть один значимый минус – они сильно шумят, в остальном же они ни чем не уступают обычным вентиляторам с крыльчаткой. А в плане дизайна, так и вовсе смотрятся необычно, вызывая не поддельный интерес, у тех, кто ранее таких кулеров не видел.

Есть сферы применения, где без турбинных кулеров не обойтись, это, прежде всего ноутбуки. Разместить в небольшом по высоте корпусе систему охлаждения не возможно и именно турбины здесь приходят на помощь. Бывает даже внешние решения для такого рода охлаждения.

Турбины для видеокарт начали появляться со времен 800-й серии NVidia GeForce GTX. И до настоящего времени такие решения были вполне оправданы. Если смириться с шумом, а в наушниках во время игры шум турбины будет не слышен, то из значимых плюсов такого решения можно отнести выдув всего горячего воздуха наружу из корпуса. Тем самым, лишние 100-250 Вт тепла не будут нагревать остальные компоненты системы.

(Nvidia GeForce 8800 GTX )

Совсем недавно на современных флагманах GeForce RTX 3090 можно было встретить турбо-кулеры, но в новостях промелькнуло, что ряд производителей сняли такие модели из производства. Так что, возможно, это было последнее семейство видеокарт с таким типом охлаждения.

Итого к плюсам разнообразных турбин можно отнести: инновационный и необычный дизайн, выдув горячего воздуха наружу (для видеокарт), плотное размещение нескольких видеокарт в системном бло. К минусам можно отнести разве что только повышенный уровень шума. К сожалению, на данном этапе времени производители перестали уделять свое внимание турбинным системам, мне хотелось бы увидеть такой кулер например от Noctua.

Если у вас были такие турбинные системы расскажите о своих плюсах и минусах. Ну а пока все ждут победы здравого смысла над майнингом и доступности видеокарт по рекомендованным ценам, посмотрите за окно, там лето!

НК-93: обогнавший свое время

Турбовентиляторный двигатель НК-93 заслуженно в перечне самых ярких разработок Николай Дмитриевича. Уже тогда его назвали двигателем XXI века.

В конце 1980-х годов Кузнецов начал думать над созданием для гражданских самолетов ГТД со сверхвысокой степенью двухконтурности. Чем больше этот параметр, тем больший КПД двигателя можно получить. Особенно это важно для пассажирских самолетов – здесь высокая степень двухконтурности положительно сказывается на экономической эффективности. К примеру, у современных лайнеров Boeing 737 и Airbus A320 этот параметр на уровне 5,5-6,6.

Еще в те годы Николай Дмитриевич решил разработать двигатель с двухконтурностью 16! Сконструированный им НК-93 со степенью двухконтурности 16,7 открыл бы новую главу в авиационном двигателестроении. Переход от степени двухконтурности 6 к 16,7 позволяет уменьшить примерно на 15% удельный расход топлива.


Летающая лаборатория Ил-76ЛЛ с двигателями НК-93. Фото: Игорь Бубин / wikimedia.org

Первое испытание НК-93 состоялось в декабре 1989 года. Но из-за глобальных перемен в стране, нехватки средств, работы по проекту двигались очень медленно, и только в мае 2007 года НК-93 поднялся в небо на летающей лаборатории Ил-76ЛЛ. В том же году на МАКСе был представлен испытательный Ил-76 с силовой установкой НК-93. В серию уникальный двигатель так и не вышел. НК-93 нашел себе применение на земле. На его основе был разработан промышленный НК-38СТ, который устанавливается на ГПА-16 «Волга».

Двигатель НК-93 стал еще одним примером особого стиля Николая Кузнецова – все его проекты на годы опережали работы отечественных и иностранных конструкторов. Научно-технической задел, который остался после выдающегося конструктора, может стать фундаментом для создания новых перспективных моторов, тем самым удерживая место России в лидерах авиационного двигателестроения.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector