Чему равна полезная работа двигателя за цикл - Авто мастер
Avtonova37.ru

Авто мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чему равна полезная работа двигателя за цикл

Чему равна работа за один цикл, совершаемая тепловой машиной, имеющей коэффициент полезного действия 70% и отдавшей за один цикл холодильнику 300 Дж теплоты?

Физика | 10 — 11 классы

Чему равна работа за один цикл, совершаемая тепловой машиной, имеющей коэффициент полезного действия 70% и отдавшей за один цикл холодильнику 300 Дж теплоты?

Qн = Qx / (1 — КПД) = 300 Дж / (1 — 0.

А = Qн — Qx = 1000 — 300 = 700 Дж.

Примеры расчета КПД

Пример 1. Нужно рассчитать коэффициент для классического камина. Дано: удельная теплота сгорания березовых дров – 107Дж/кг, количество дров – 8 кг. После сгорания дров температура в комнате повысилась на 20 градусов. Удельная теплоемкость кубометра воздуха – 1,3 кДж/ кг*град. Общая кубатура комнаты – 75 кубометров.

Чтобы решить задачу, нужно найти частное или отношение двух величин. В числителе будет количество теплоты, которое получил воздух в комнате (1300Дж*75*20=1950 кДж ). В знаменателе – количество теплоты, выделенное дровами при горении (10000000Дж*8 =8*107 кДж). После подсчетов получаем, что энергоэффективность дровяного камина – около 2,5%. Действительно, современная теория об устройстве печей и каминов говорит, что классическая конструкция не является энергоэффективной. Это связано с тем, что труба напрямую выводит горячий воздух в атмосферу. Для повышения эффективности устраивают дымоход с каналами, где воздух сначала отдает тепло кладке каналов, и лишь потом выходит наружу. Но справедливости ради, нужно отметить, что в процессе горения камина нагревается не только воздух, но и предметы в комнате, а часть тепла выходит наружу через элементы, плохо теплоизолированные – окна, двери и т.д.

Пример 2. Автомобиль проделал путь 100 км. Вес машины с пассажирами и багажом – 1400 кг. При этом было затрачено14 литров бензина. Найти: КПД двигателя.

Для решения задачи необходимо отношение работы по перемещению груза к количеству тепла, выделившемуся при сгорании топлива. Количество тепла также измеряется в Джоулях, поэтому не придется приводить к другим единицам. A будет равна произведению силы на путь( A=F*S=m*g*S). Сила равна произведению массы на ускорение свободного падения. Полезная работа = 1400 кг x 9,8м/с2 x 100000м=1,37*108 Дж

Удельная теплота сгорания бензина – 46 МДж/кг=46000 кДж/кг. Восемь литров бензина будем считать примерно равными 8 кг. Тепла выделилось 46*106*14=6.44*108 Дж. В результате получаем η ≈21%.

КПД при передаче энергии

Коэффициент полезного действия можно определить как отношение полезной работы к затраченной на ее выполнение энергии ($Q$):

Для вычисления коэффициента полезного действия теплового двигателя применяют следующую формулу:

где $Q_n$ — количество теплоты, полученное от нагревателя; $Q_$ — количество теплоты переданное холодильнику.

КПД идеальной тепловой машины, которая работает по циклу Карно равно:

где $T_n$ — температура нагревателя; $T_$ — температура холодильника.

КПД промышленных насосов

В данной статье косвенно рассмотрим коэффициент полезного действия насосов различных видов: центробежных, винтовых, импеллерных, мембаранно-пневматических.

Читать еще:  Влияние пусковых рабочих и концевых фракций на работу двигателя

Центробежный насос

КПД самых распространенных центробежных насосов во многом зависит от режима их работы и конструктивных особенностей. Максимальным КПД обладают центробежные насосы с приводом большой мощности и высокими рабочими характеристиками. Их эффективность может достигать 92-95 %. Значение мощности двигателя таких центробежных насосов обычно начинается от 10кВт, а насосная часть имеет высокое качество изготовления.

Насос с магнитной муфтой

Насосы с магнитной муфтой имеют схожий КПД. Для данного типа насоса очень важно, чтобы герметичная задняя крышка насоса, располагающаяся между ведущим и ведомым магнитом, была изготовлено из токонепроводящих материалов. Иначе, будут возникать вихревые токи, которые вызывают потерю мощности и снижают общий КПД насоса.

Винтовой насос

Винтовые насосы имеют высокие механические потери. Они в первую очереди связаны с трениями, которые возникают в подшипниковом узле, а также между ротором и статором, но благодаря высоким рабочим характеристикам (расход, напор) данный тип насосов может иметь КПД колеблющийся от 40 до 80 %.

Импеллерный насос

Мембранно-пневматический насос

Мембранно-пневматические насосы не имеют двигателя и работают от поданного на него сжатого воздуха. Так как требуется дополнительное превращение электрической энергии в энергию сжатого воздуха, то КПД мембранно-пневматического насоса во многом зависит от КПД воздушного компрессора. Обычно КПД поршневых компрессоров составляет 80-92%, лопастных 90-96%. Кроме этого, в самом насосе, в той или иной мере, присутствуют все виды потерь. Гидравлические потери возникают, когда жидкость через небольшое всасывающее отверстие поступает в рабочую камеру насоса и выходит через отверстие подачи под определенным углом. Здесь поток жидкости сталкивается с внезапным расширением сечения при последующем резком повороте. Механические потери связаны с тем, что основная втулка насоса является парой трения скольжения. Кроме этого имеет место трение жидкости с деталями насоса: клапана, коллектора, мембрана, стенки боковой крышки. Объемные потери определяются отношением количества жидкости поступившего в насос и количеством жидкости вышедшего из него за два такта (всасывание – нагнетание).

Взаимосвязь полезной мощности и КПД

Коэффициент полезного действия (КПД) – величина безразмерная, численно выражается в процентах. КПД обозначают буквой η.

Формула имеет вид:

где:

  • А – полезная работа (энергия);
  • Q – затраченная энергия.

По мере увеличения КПД в различных двигателях допустимо выстроить следующую линейку:

  • электродвигатель – до 98%;
  • ДВС – до 40%;
  • паровая турбина – до 30%.

Что касается мощности, КПД равен отношению полезной мощности к полной мощности, которую выдает источник. В любом случае η ≤ 1.

Важно! КПД и Pпол не одно и то же. В разных рабочих процессах добиваются максимума или одного, или другого.

Получение максимальной энергии на выходе ИП

К сведению. Чтобы увеличить КПД подъёмных кранов, нагнетательных насосов или двигателей самолётов, нужно уменьшить силы трения механизмов или сопротивления воздуха. Этого достигают применением разнообразных смазок, установкой подшипников повышенного класса (заменив скольжение качением), изменением геометрии крыла и т.д.

Читать еще:  Чем помыть двигатель мотоцикла в домашних условиях

Максимальная энергия или мощность на выходе ИП может быть достигнута при согласовании сопротивления нагрузки Rн и внутреннего сопротивления R0 ИП. Это значит, что Rн = R0. В этом случае КПД равен 50%. Это вполне приемлемо для малоточных цепей и радиотехнических устройств.

Однако этот вариант не подходит для электрических установок. Чтобы впустую не тратились большие мощности, режим эксплуатации генераторов, выпрямителей, трансформировав и электродвигателей таков, что к.п.д. приближается к 95% и выше.

Достижение максимального КПД

Формула КПД источника тока имеет вид:

η = Pн/Pобщ = R/Rн+r,

где:

  • Pн – мощность нагрузки;
  • Pобщ – общая мощность;
  • R – полное сопротивление цепи;
  • Rн – сопротивление нагрузки;
  • r – внутреннее сопротивление ИТ.

Как видно из графика, изображённого на рис. выше, мощность Pн с уменьшением тока в цепи стремится к нулю. КПД, в свою очередь, достигнет максимального значения, когда цепь будет разомкнута, и ток равен нулю, при коротком замыкании в цепи станет равным нулю.

Если обратиться к элементарному тепловому двигателю, состоящему из поршня и цилиндра, то у него степень сжатия равна степени расширения. Повышение КПД такого мотора возможно в случае:

  • изначально высоких параметров: давления и температуры рабочего тела перед началом расширения;
  • приближения их значений к параметрам окружающей среды по окончании расширения.

Достижение ηmax доступно лишь при наиболее эффективном изменении давления рабочего компонента во вращательное движение вала.

К сведению. Термический коэффициент полезного действия повышается с повышением доли теплоты, подаваемой к рабочему телу, которая преобразуется в работу. Подаваемая теплота делится на два вида энергии: внутренняя в виде температуры и энергия давления.

Механическую работу, по сути, совершает только второй вид энергии. Это порождает целый ряд минусов тормозящих процесс повышения КПД:

  • некоторая часть давления уходит на внешнюю среду;
  • достижение максимального коэффициента полезного действия невозможно без увеличения процента использования энергии давления для преобразования в работу;
  • нельзя поднять КПД тепловых двигателей, не изменяя S поверхности приложения давления, и без удаления этой поверхности от точки вращения;
  • использование только газообразного рабочего тела не способствует повышению η тепловых двигателей.

Для достижения высокого коэффициента полезного действия теплового двигателя нужно определяться с рядом решений. Этому способствуют следующие модели устройства:

  • ввести в цикл расширения ещё одно рабочее тело с другими физическими свойствами;
  • наиболее полно перед расширением использовать оба вида энергии рабочего тела;
  • осуществлять генерацию добавочного рабочего тела прямо при расширении газообразного.

Информация. Все доработки двигателей внутреннего сгорания в виде: нагнетателя турбонадува, организации многократного или распределённого впрыска, а также повышения влажности воздуха, доведения топлива при впрыске до состояния пара, не дали ощутимых результатов резкого повышения КПД.

Читать еще:  Что необходимо для замены двигателя в гаи

Анализ теплового цикла

Тепловой цикл включает в себя четыре термодинамических базовых процесса. Вначале происходит преобразование состояния рабочего тела, а затем, возвращение его в исходное состояние: сжатие, получение тепла, расширение и отвод тепла.

Каждый из этих процессов осуществляется по следующей схеме, которая определяет условия реализации цикла:

  1. Изотермический — работа выполняется при постоянной температуре.
  2. Изобарический — рабочий цикл реализуется при постоянном давлении.
  3. Изометрический — тепловой процесс протекает при постоянном объеме
  4. Адиабатический — цикл осуществляется при постоянной энтропии.

Для того чтобы процесс был максимально приближен к обратимому, есть два способа перемещения поршня: изотермический — это означает, что тепло постепенно поступает или выходит из резервуара при температуре, бесконечно отличающейся от температуры газа в поршне, и адиабатический, при котором теплообмен вообще не происходит, газ действует, как пружина.

Таким образом, когда подводится тепло и газ расширяется, температура газа должна оставаться такой же, как и у источника тепла, при этом газ расширяется изотермически. Точно так же позже он будет сжиматься в цикле изотермически, с выделением тепла.

Чтобы выяснить эффективность, нужно проследить за полным циклом двигателя, выяснить, сколько он работает, сколько тепла забирается из топлива и сколько энергии теряется при подготовке к следующему циклу.

Характеристики теплового цикла, связанного с тепловым двигателем, обычно описываются с помощью двух диаграмм изменения состояния: диаграммы PV, показывающей соотношение давление-объем, и диаграммы TS, демонстрирующей пару температура-энтропия.

Для постоянной массы газа работа теплового двигателя представляет собой повторяющийся цикл, и его PV-диаграмма будет выглядеть замкнутой фигурой.

Применение в разных сферах физики

Примечательно, что КПД не существует как понятие нейтральное, для каждого процесса есть свой КПД, это не сила трения, он не может существовать сам по себе.

Рассмотрим несколько из примеров процессов с наличием КПД.

К примеру, возьмем электрический двигатель. Задача электрического двигателя — преобразовывать электрическую энергию в механическую. В этом случае коэффициентом будет являться эффективность двигателя в отношении преобразования электроэнергии в энергию механическую. Для этого случая также существует формула, и выглядит она следующим образом: Ƞ=P2/P1. Здесь P1 — это мощность в общем варианте, а P2 — полезная мощность, которую вырабатывает сам двигатель.

Нетрудно догадаться что структура формулы коэффициента всегда сохраняется, меняются в ней лишь данные, которые нужно подставить. Они зависят от конкретного случая, если это двигатель, как в случае выше, то необходимо оперировать затрачиваемой мощностью, если работа, то исходная формула будет другая.

Теперь мы знаем определение КПД и имеем представление об этом физическом понятии, а также об отдельных его элементах и нюансах. Физика — это одна из самых масштабных наук, но её можно разобрать на маленькие кусочки, чтобы понять. Сегодня мы исследовали один из этих кусочков.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector