Avtonova37.ru

Авто мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чпу станок своими руками драйвер шагового двигателя

ЧПУ станок своими руками на базе arduino. Пошаговая инструкция + видео

Все мои статьи с видео про создание ЧПУ станков на одной странице. Своего рода инструкция.

Данная страница будет пополняться. Не забудьте добавить ее в закладки!

Проект №7. ЧПУ плоттер на Arduino своими руками.

  • ЧПУ плоттер на Arduino своими руками.
  • G-Code для плоттера на Arduino.
  • Красивые эффекты изображений для рисования на ЧПУ плоттере.
  • Прошивка для плоттера GRBL Servo и работа с программой LaserGRBL.
  • Установка и настройка конечных выключателей на 2 осевой ЧПУ станок – GRBL.

Проект №6. Лазерный гравер на ESP32. Прошивка GRBL_ESP32.

Проект №5. Самодельный Лазерный гравёр с ЧПУ, в домашних условиях

Проект №4. Самодельный ЧПУ фрезерный станок на Arduino с дисплеем

Проект №3. Самодельный CNC станок из мебельных направляющих на базе Arduino UNO

Получив опыт создания самодельных ЧПУ станков. Определился с какой электроникой мне проще работать. Решил вложить немного денег и с делать фрезерный CNC станок на мебельных направляющих .

Заготовке вырезанные на данном ЧПУ станке можно посмотреть тут.

Готовые проекты сотрите тут.

Комплектующие ЧПУ :

Проект №2. Лазерный гравировальный станок с ЧПУ (шаговые двигателя от матричного принтера)

После своего первого опыта в разработке ЧПУ станков, решил собрать самодельный лазерный гравировальный ЧПУ станок . По моим подсчетам данный станок самый простои и дешевый по комплектующим. Собирал я его поэтапно и снимал видео инструкцию по сборке ЧПУ . Все моменты сборки ЧПУ не возможно осветить, но я постарался рассказать про основные.

Для управления использовал электронику: Arduino UNO + CNCshield v3 + драйвера A4988

Недорогую электронику для ЧПУ можно купить в Китае >>>

Проект №1. Мой первый ЧПУ станок из матричных принтеров (Не удачная версия)

Для проверки своих сил собрал ЧПУ станок из того что было под рукой. Дополнительно затратил денег не больше 3 тыс. руб.

Станок работал. Но работа была не очень хорошего качества и было много ограничений по функционалу. Но что можно ожидать от CNC станка за 3 000 руб.

Для сборки ЧПУ станка из деталей от принтера были использовано:

  1. 3 Матричных принтера формата А3.
  2. Мебельные направляющие: 2 пары 500 мм. И одна пара на 300 мм.
  3. Доска 25х100, брусок 25х25, фанера толщиной 8 мм.
  4. Блок питания от компьютера.
  5. Arduino NANO
  6. Драйвера L298 4 шт.
  7. Строительные и мебельные уголки.
  8. Саморезы, винты, гайки и шпилька М10.
  9. Телефонные провода, провода из компьютера.
  10. Переменный резистор из автомобиля.
  11. Двигатель от автомобильного компрессора.
  12. Шаговый двигатель от сканера .
  13. Латунная цанга.

Понравилась статья? Поделитесь ею с друзьями:

ЧПУ из CD-ROM / DVD-ROM

  • Форумы
  • Мастерская
  • Проекты в разработке

Dadza

Разобрал свои приводы.
Буду делать небольшой плоттер или гравер. Зачем? А просто жутко интересно.

Пожалуйста, если нравится тема, ставьте « Мне нравится«, что бы я мог видеть отклик от своей работы.

Arhat109

Старик Похабыч

Dadza

Dadza

Из CD/DVD были извлечены каретки с направляющими и шаговым двигателем.
Это будет осью Y:

Это будет осью X:

На каретки я приклеил небольшие брусочки, на которые в последующем будет крепиться площадка. Предварительно выровнял пластик на каретке.

Далее отпилил кусок листового материала (в моем случае кусок ламинатины). Из тех же сидиромов вырезал уголки и прикрутил две ламинатины под 90 градусов. Позже на них буду крепить направляющие с кареткой.

Dadza

И так , закрепил я шаговые двигатели и направляющие на своей «станине». Крепление производил винтами М4 и гайками. Штангенциркулем вымерял и выровнял направляющие относительно станины (чтобы направляющие были параллельны станине).

Верхняя будет двигать каретку по оси X.
Нижняя будет двигать каретку по оси Y.
Пока обойдёмся двумя осями.

Берём шлейф от флопика и отсчитывем 8 жил. 4 жилы пойдет на один движок, другие 4 на другой. Паяемся.

Dadza

Т.к. у меня получилось «по-шустрому» достать драйвера DRV8255, то буду подключать шаговые двигатели через них. К сожалению CNC шилд быстро не приедет, а у нас в Минске покупать — дораха, поэтому обойдемся без него.

Читать еще:  Большой расход масла в двигателе двигатель не дымит

Схема подключения DRV8825 без шилда (без CNC shield):

Ну вот и первые непонятки.
Какого верблюда не крутится шаговый двигатель с драйвером DRV8825 ?
Про*бался дня 2 наверно, пока разобрался что к чему.

Помогли статьи и видюшки, делюсь:
Про шаговый двигатель CD-ROM / DVD-ROM — ТУТ
Настройка шаговых двигателей DRV8825 — ТУТ
Обзор драйвера DRV8825 — ТУТ

Короче, перед тем как подключить двигатель нам надо выставить опорное напряжение (Vref) для двигателя. Выставляется это напряжение на драйвере. Как это делается.
1) Собираем схему:

2) Подаем питание на драйвер! (через красный и черный провод на макетке). Внимание подавать нужно строго от 8,2В до 45В!
Если подадите меньше — спалите драйвер!

3) Подаем питание на ардуинку. Я питался от USB ПК.

4) Переключаем мультиметр в mV , Подключаем Мультиметр к контактам:

И стараемся выставить Vref согласно формуле: Vref = I / 2 , где I ток нашего шагового двигателя.

5) Т.к. я использую шаговые двигатели CD-ROM/DVD-ROM их ток порядка 500mA. значит Vref = не более 250mV. Но я выставлю чуть поменьше, порядка 150mV, если двигатель греться не будет, то буду увеличивать Vref до 250mV.

Очень помогла ссылка по настройке DRV8825 — ТУТ

Ура, двигатель начал издавать звуки и даже крутиться.

Что нужно для создания фрезерного станка на «Ардуино» своими руками?

Лучше всего приобрести готовый набор Arduino Uno и CNC Shield v3, предназначенный для ЧПУ. В него входит следующее:

  1. Плата Arduino Uno.
  2. USB-кабель для соединения с ПК.
  3. Плата расширения CNC Shield v3.
  4. Драйверы DRV8825 или A4988.
  5. Шаговые двигатели с 4 контактами.
  6. Компьютер. Он понадобится для загрузки прошивки.
  7. Блок питания, предназначенные для работы двигателей. Чаще всего используют 12В и 3А.

Что нужно для создания фрезерного станка на Ардуино своими руками

Для самостоятельного создания фрезерного станка с ЧПУ рекомендуется приобрести проверенный комплект электроники и оборудования:

  • Контроллер Arduino;
  • Плату расширения CNC Shield v3 / v4;
  • Драйверы DRV8825 / A4988;
  • 4-контактные шаговые двигатели (по 2 на каждую ось);
  • Блоки питания для двигателей;
  • Необходимый рабочий инструмент.

Для загрузки на плату прошивки потребуется компьютер и USB-кабель. Также для соединения всех электрических элементов станка необходим электрокабель.

Для сборки корпуса станка необходимы такие материалы:

  • Фанерные листы (размер зависит от габаритов проектируемого станка);
  • Резьбовые валы;
  • Стальные стержни;
  • Шариковые подшипники;
  • Болты и гайки;
  • Втулки из нейлона (капролона, фторопласта) и металлические втулки.

Драйвер шагового двигателя. Тестируем микросхему L9110

Откуда «ножки» растут

В настоящее время стали доступны и приобрели популярность различные станки с программным управлением. Это лазерные и фрезерные резчики и гравёры. А так же 3D принтеры. Все эти станки имеют один общий узел — шаговый двигатель.

И этому двигателю нужен драйвер.

Принцип работы двигателя не является предметом этой статьи. Мы рассмотрим только драйвер. Всё, что нам нужно знать в данном контексте — это какие управляющие сигналы нам нужно формировать для управления шаговым двигателем. Оказывается, это самые обычные прямоугольные импульсы.

Существует некоторое количество решений драйверов от различных компаний. В нашей статье мы рассмотрим самое доступное решение драйвера L9110 и его аналог HG7881 Это решение часто используется в Arduino

Теория и практика

Я решил применить микросхему L9110 в своём проекте.

Довольно легко нагуглил datasheet. Прочитал. Всё предельно понятно. Характеристики, распиновка, таблица истинности… По всем параметрам драйвер, вроде бы подходит. Напряжение коммутации — 12 вольт, выходной ток 800 ма. — всего хватает.

А что на деле?

Не откладывая в «долгий ящик» я сделал плату, написал и запустил тестовую программу…
Первое, на что я обратил внимание в своём устройстве — то, что микросхема драйвера сильно греется. Внимание! НА ХОЛОСТОМ ХОДУ. Без нагрузки. Это что за чудеса схемотехники?
Может у меня микросхема бракованная?

Пришла в голову идея рассмотреть сей девайс поподробнее. И не один, а кучу.
Сказано — сделано.
Хорошо, что у меня была припасена панелька SO-8 и плата для моделирования.
Ну, и контроллер на базе STM32.

Читать еще:  Время нагрева двигателя ваз до рабочей температуры

Собран стенд и произведены измерения.

Да, кстати, кроме непосредственно, силового узла в микросхеме заложена логика исключающее ИЛИ. В даташите это описано.

Поскольку я изучаю эффект нагрева микросхемы, лучше не ограничиваться логическими единицами и нулями, а снять реальные напряжения.

В результате измерений получилась табличка:

Рассмотрим строчки 2 и 3. Что мы здесь видим?

  1. Падение напряжения на выходных транзисторах, при наличии нагрузки, около полутора вольт, что при токе 0,33 ампера даёт 0,5 ватт на канал.
  2. На холостом ходу микросхема потребляет 0,05 А, что при напряжении 12 В даёт 0,6 ватт на канал.

Другими словами, независимо от нагрузки она потребляет около 0,5 Вт на канал. Теперь понятно, почему я об неё обжигал пальцы.

Сильный нагрев — это, конечно недостаток. Но может свою функцию микросхема выполняет хорошо? Тут пригодился недавно подаренный себе 4-х лучевой осциллограф приставка. Не ожидал, что мне так скоро потребуются все 4 луча. Для тестирования написал простенькую программку на stm32, который давно использую в различных проектах. Программа, просто, генерирует 2 прямоугольных сигналы с трёхкратной разницей частот.

Поскольку один раз увидеть лучше чем много раз прочитать — прикладываю развёртку сигналов управления.

Ничего особо сложного. Просто прямоугольные импульсы сдвинутые с разницей частоты в 3 раза.

Верхняя часть экрана — входные сигналы — нижняя — выходные.

Сразу бросается в глаза, что при различающихся значениях сигналов на входах, значения на выходах вполне чёткие Устанавливаются без задержек и с резкими фронтами.

Если же сигналы на входах совпадают — то фронт пологий. похож на разряд конденсатора.
Просмотрев документацию я не увидел ничего такого, что предвещало бы такое поведение.
Может я задал слишком высокую частоту входных сигналов? В даташите лимит не указан.
Уже зная, что у этого драйвера есть почти стопроцентный аналог HG7881 я обратился к его документации.

Она пролила больше света на эту загадочную ситуацию. Оказывается, логика работы драйвера немного шире. Две единицы на входе — это торможение ( то есть на выходе оба сигнала должно быть низкого уровня.) А два нуля на входе — это «висящие» контакты. Разрыв.

Значит два нуля на входе должны «подвешивать» выходы. Тогда, поведение разряжающегося конденсатора вполне предсказуемо. Однако две единицы на входах — должны быть надёжным нулём на выходе. А фактически это не так.

Я мог бы списать этот дефект на «китайского производителя». Однако, я тестировал микросхему по честному выпаянную из ардуиновской платы. При чём — не одну микросхему. Из нескольких плат. То есть, вероятность брака сильно снижена.

Вывод

Область применения микросхем L9110 уже, чем задекларирована, да и КПД низковат.
Рассеяние 0,5-0,6 ватта на одном ключе — это многовато. Не случайно это решение самое дешёвое.(10 центов за микросхему. на алиэкспрессе).

В следующих статьях будут рассмотрены альтернативные драйвера шаговых двигателей.

Контроллер из подручных материалов

Большинство умельцев предпочитают управление через LPT порт для большинства программ управления любительского уровня. Вместо применения комплекта спецмикросхем для этой цели, кое-кто строит контроллер из подручных материалов – полевых транзисторов из сгоревших материнских плат (при напряжении свыше 30 вольт и током больше 2 ампер).

А поскольку создавался станок для нарезания пенопласта, в качестве ограничителя тока изобретатель использовал автомобильные лампы накаливания, а ШД снимали со старых принтеров или сканеров. Такой контроллер устанавливали без изменений в схеме.

Чтобы сделать простейший станок ЧПУ своими руками, разбирая сканер, помимо ШД, извлекается и микросхема ULN2003, и два стальные прутки, они пойдут на тестовый портал. К тому же понадобятся:

  • Коробка из картона (из нее смонтируют корпус устройства). Возможен вариант с текстолитом или фанерным листом, но картон резать легче; куски древесины;
  • инструменты – в виде кусачек, ножниц, отверток; клеевой пистолет и паяльные принадлежности;
  • вариант платы, которая подходит на самодельный ЧПУ станок;
  • разъем для LPT порта;
  • гнездо в форме цилиндра для обустройства блока питания;
  • элементы соединения – стержни с резьбой, гайки, шайбы и шурупы;
  • программа для TurboCNC.
Читать еще:  Golf 4 что то с оборотами двигателя

Сборка самодельного устройства

Приступив к работе над самодельным контроллером для чпу, первый шаг – аккуратно припаять микросхему на макетную плату с двумя шинами электропитания. Дальше последует соединение вывода ULN2003 и коннектора LPT. Далее оставшиеся выводы подключаем по схеме. Нулевой вывод (25-ый параллельного порта) соединяется с отрицательным на шине питания платы.

Затем ШД соединяют с устройством управления, а гнездо для электропитания – с соответствующей шиной. Для надёжности соединений проводов выполняют их фиксацию термоклеем.

Не составит труда подключение Turbo CNC. Программа эффективна с MS-DOS, совместима и с Windows, но в этом случае возможны некоторые ошибки и сбои.

Настроив программу на работу с контроллером, можно изготовить тестовую ось. Последовательность действий по подключению станков такова:

  • В отверстия, просверленные на одном уровне в трех деревянных брусках, вставляют прутки из стали и закрепляют шурупами небольшого размера.
  • ШД соединяют со вторым бруском, надевая его на свободные концы прутов и прикручивают, применяя шурупы.
  • Через третье отверстие продевается ходовой винт и ставится гайка. Винт, вставленный в отверстие второго бруска, завинчивают до упора, чтобы он, пройдя через эти отверстия, вышел на вал двигателя.
  • Далее предстоит соединение стержня с валом двигателя отрезком шланга из резины и проволочным зажимом.
  • Для крепления ходовой гайки нужны дополнительные винты.
  • Сделанная подставка также крепится к второму бруску при помощи шурупов. Горизонтальный уровень регулируется дополнительными винтами и гайками.
  • Обычно вместе с контроллерами подключаются и двигатели и тестируются на предмет правильного соединения. Далее следует проверка масштабирования ЧПУ, прогонка тестовой программы.
  • Остается сделать корпус устройства и это будет завершающим этапом работы тех, кто созидает самодельные станки.

Программируя работу 3-осевого станка, в настройках по первым двум осям – без перемен. А вот при программировании первых 4-х фаз третьей – вводятся изменения.

Внимание! Используя упрощенную схему контроллера ATMega32 (Приложение 1), в отдельных случаях можно столкнуться с некорректной обработкой оси Z – режим полушага. А вот в полной версии его платы (Приложение 2), токи осей регулируются внешним аппаратным ШИМом.

Станок ЧПУ (3Д принтер), Arduino Uno и мощные движки или CNC Shield VS плата опторазвязки 5 осей

Собрав всё воедино получаем совершенно потрясающие характеристики:

  • низкая стоимость станка с ЧПУ (менее 100$ или 3000 руб без учёта стоимости компьютера);
  • лёгкая доступность всех деталей станка;
  • работа с растровыми изображениями, которые легко может создать любой человек в простом графическом редакторе (например Paint);
  • расширяемая платформа для разработки множества смежный систем;
  • в идеале программное обеспечение должно иметь возможность обработки фотографий и/или изображений, полученных с обычного сканера.

Изначально планировалось использовать станок с ЧПУ на ардуино для фрезерования плоских фигур, орнаментов и объёмных тел. Однако, впоследствии к станку был подключен контактный датчик для 3D-сканирования. Затем, на станок был установлен лазерный модуль для гравирования / выжигания. И, наконец, станок с ЧПУ был превращён в 3D-принтер: для этого потребовалось установить дополнительный блок, который называется экструдер.

Таким образом, получаем не просто 3-хкоординатный станок для фрезерования с ЧПУ на Ардуино, а целую платформу, на базе которой легко собирается:

  • станок для фрезерования 2D-фигур и 3D-тел;
  • контактный 3D-сканер;
  • лазерный гравер / выжигатель с ЧПУ;
  • 3D-принтер.

На сайте выложены подробные схемы сборки станка с ЧПУ, включая его модификации, чертежи станка с ЧПУ, исходные коды программного обеспечения, а также исходные коды прошивок для Arduino.

Станок с ЧПУ на Ардуино и его модификации собирались своими руками. Для промышленных целей такой станок с CNC конечно не подойдёт, однако для штучного изготовления и освоения принципов работы механики и программного обеспечения подходит.

Кроме того, на сайте имеется отдельный раздел, посвящённый приобретению компонентов самодельного станка с ЧПУ и необходимых расходных материалов, где описано, где, как и по какой цене можно приобрести требуемые составляющие простого станка CNC.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector