Avtonova37.ru

Авто мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое выпадение синхронного двигателя из синхронизма

Конструктивно синхронный электродвигатель состоит из неподвижного элемента, подвижной части, обмоток различного назначения, может комплектоваться коллекторным узлом. Далее рассмотрим каждую составляющую синхронного агрегата более детально на рабочем примере (рисунок 1).

Рис. 1. Устройство синхронного электродвигателя

  • Статор или якорь – выполняется из электротехнической стали монолитным или наборным из шихтованного железа. Предназначен для размещения рабочей обмотки, проводит силовые линии электромагнитного поля, формируемого протекающими токами.
  • Обмотка на статоре – изготавливается из медных проводников, в зависимости от типа статора синхронного электродвигателя может выполняться различными методами, способами намотки и расположения проводников. Применяется для подачи напряжения питания и формирования рабочего магнитного потока.
  • Ротор с обмоткой возбуждения – предназначен для взаимодействия с магнитным полем статора. В результате подачи напряжения на обмотку возбуждения в роторе электродвигателя создается собственное магнитное поле, задающее состояние вращающегося элемента.
  • Вал – используется для передачи вращательного усилия от электродвигателя к подключаемой к нему нагрузке. В большинстве случаев это основание, на котором крепиться шихтовка или полюса ротора, подшипники, кольца, пластины и другие вспомогательные элементы.
  • Контактные кольца – применяются для подачи питания на обмотки ротора, но устанавливаются не во всех моделях синхронных агрегатов. Питание производиться через специальный преобразователь переменного напряжения в постоянное.
  • Корпус – предназначен для защиты от воздействия внешних факторов, обеспечивает синхронному двигателю достаточную прочность и герметичность, в зависимости от условий его эксплуатации.

Основными частями синхронной машины являются якорь и индуктор (обмотка возбуждения). Как правило, якорь располагается на статоре, а на отделённом от него зазором роторе находится индуктор — таким образом, по принципу действия синхронная машина представляет собой как бы «вывернутую наизнанку» машину постоянного тока, переменный ток для обмотки якоря которой не получается с помощью коллектора, а подводится извне.

Якорь представляет собой одну или несколько обмоток переменного тока. В двигателях токи, подаваемые в якорь, создают вращающееся магнитное поле, которое сцепляется с полем индуктора, и таким образом происходит преобразование энергии. Поле якоря оказывает воздействие на поле индуктора и называется поэтому также полем реакции якоря. В генераторах поле реакции якоря создаётся переменными токами, индуцируемыми в обмотке якоря от индуктора.

Индуктор состоит из полюсов — электромагнитов постоянного тока [1] или постоянных магнитов (в микромашинах). Индукторы синхронных машин имеют две различные конструкции: явнополюсную или неявнополюсную. Явнополюсная машина отличается тем, что полюса ярко выражены и имеют конструкцию, схожую с полюсами машины постоянного тока. При не явнополюсной конструкции обмотка возбуждения укладывается в пазы сердечника индуктора, весьма похоже на обмотку роторов асинхронных машин с фазным ротором, с той лишь разницей, что между полюсами оставляется место, не заполненное проводниками (так называемый большой зуб). Неявнополюсные конструкции применяются в быстроходных машинах, чтобы уменьшить механическую нагрузку на полюса.

Для уменьшения магнитного сопротивления, то есть для улучшения прохождения магнитного потока, применяются ферромагнитные сердечники ротора и статора. В основном они представляют собой шихтованную (набранную из отдельных листов) конструкцию из электротехнической стали.

Комитет по делам изобретений и открытки при Совете Министров СССР Редактор Л. А. БлатоваГр. 93

Информационно-издательский отдел.Подп. к печ. 29.1V-59 г.

Объем 0,34 п. л.Зак. 2832Тираж 785Цена 50 коп.

Типография Комитета по делам изобретений и открытий при Совете Министров СССР

Москва, Петровка, 14.

Принцип работы синхронного генератора

> Генераторы > Принцип работы синхронного генератора

Генератор (альтернатор) переменного тока предназначен для того, чтобы преобразовывать механическую энергию в электрическую. Его ротор вращается от первичного двигателя, в качестве которого может служить турбина, ДВС, электродвигатель.

Как выглядит синхронный генератор

К синхронным машинам относятся те, у которых ротор имеет одинаковую частоту вращения с магнитным полем:

f – частота сети;

p – количество пар полюсов статора.

Принцип работы

Статор и ротор – главные составные части синхронного генератора (СГ).

Принцип действия синхронного генератора

Как изображено на рисунке, синхронный генератор чаще всего вырабатывает энергию, когда ротор вращается вместе с магнитным полем, линии которого пересекают статорную обмотку, расположенную неподвижно. Поле создаётся от дополнительного возбудителя (дополнительного генератора, аккумулятора и др. источников).

Читать еще:  Через сколько делать капремонт двигателя на приоре

Процесс может происходить наоборот – вращающийся проводник находится в неподвижном магнитном поле. Здесь появляется проблема токосъёма через коллекторный узел. Для генераторов переменного тока небольшой мощности эта схема вполне подходит. Обычно она применяется в передвижных установках.

В СГ вырабатывается ЭДС:

B – магнитная индукция;

l – длина паза статора;

w – количество витков в статорной обмотке;

D – внутренний диаметр статора.

Основная электроэнергетика построена на напряжении 15-40 кВ. Передача энергии через коллектор СГ затруднительна. К тому же подвижная обмотка подвержена ударным нагрузкам и вращению с переменной скоростью, что создаёт проблемы с изоляцией. Из-за этого, обмотки якоря делают неподвижными, поскольку через них проходит основная энергия. Мощность возбудителя не превышает 5% от общей мощности СГ. Это позволяет проводить ток через подвижный узел.

В машинах переменного тока небольшой мощности (несколько киловатт) ротор изготавливают с постоянными магнитами (неодимовыми и др.). Здесь не требуется установка подвижных контактов, но тогда возникают сложности с регулированием напряжения на выходе.

Устройство генератора

Принцип работы генераторов тока в автомобилях

Статор имеет общий принцип действия с асинхронником и мало отличается от него. Его железо собирается из пластин электротехнической стали, разделённых изолирующими слоями. В пазах размещается обмотка переменного тока. Наиболее распространён трёхфазный синхронный генератор. Провода обмоток надёжно крепятся и изолируются, поскольку через них подключается нагрузка.

Ротор выполняется с явно выраженными полюсами или без выступающих полюсов.

Виды полюсов синхронного генератора: а) – выступающие; б – неявно выраженные

Первые делаются для тихоходных машин, например, с гидравлическими турбинами. Для вращающихся с большой скоростью генераторов переменного тока принцип действия заключается в применении более прочных неявно выраженных полюсов.

СГ может работать в режимах двигателя или генератора переменного тока. Важно, какой здесь применяется способ охлаждения. Обычно на валу устанавливаются крыльчатки, охлаждающие ротор с обеих сторон. Воздух перед вентиляцией проходит через фильтр. В замкнутой системе циркулирует один и тот же воздух, проходя через теплообменники.

Более эффективным охлаждающим агентом является водород, в 14,5 раз более лёгкий, чем воздух. Принцип охлаждения у него аналогичный.

Обмотки генератора переменного тока выводятся концами на его распределительную коробку. Для трёхфазных – соединение производится в звезду или в треугольник.

Синхронный генератор преимущественно обеспечивает поддерживание синусоидального переменного напряжения. Это достигается изменением формы полюсных наконечников, а неявнополюсный ротор имеет определённое расположение витков в его пазах.

Реакция якоря

При соединении выхода с внешней нагрузкой в обмотках статора протекает электрический ток. Образующееся магнитное поле накладывается на поле, которое создаёт ротор.

Реакция якоря при разных видах нагрузки

При активной нагрузке ток и ЭДС совпадают по фазам (изображено на рисунке выше – а). Он становится максимальным, если полюса ротора располагаются напротив якорных обмоток. Основной магнитный поток и образующийся от реакции якоря перпендикулярны и при наложении образуют несколько больший результирующий поток, увеличивающий ЭДС.

Индуктивная нагрузка приводит к снижению ЭДС, поскольку потоки направлены встречно (изображено на рисунке выше – б).

Ёмкостная нагрузка вызывает совпадение направлений потоков, в результате чего ЭДС увеличивается.

Увеличение нагрузки приводит к большей реакции якоря, приводящей к изменению выходного напряжения, что нежелательно. На практике этот процесс управляется изменением возбуждения, что снижает степень воздействия реакции якоря на основное поле.

Режимы работы СГ

Нормальные режимы работы характеризуются сколько угодно длительными периодами времени. В их число входят отклонения коэффициентов мощности, выходного напряжения до 5% и частоты до 2,5% от номиналов и т. п. Допуски на отклонения определяются нагревом агрегатов и задаются стандартами или гарантируются производителями.

Блокинг генератор: принцип работы

А нормальные режимы функционирования неприемлемы для продолжительной работы и связаны с появлением перегрузок, с недовозбуждением, переходами в асинхронные режимы. Этот режим работы связан с отклонениями в сети: короткими замыканиями, нагрузками переменного действия, неравномерностью загрузки фаз.

Читать еще:  Что закрывать при мойке двигателя шевроле круз

Процесс

Последовательность событий аналогична для ручной или автоматической синхронизации. Генератор доводится до приблизительно синхронной скорости за счет подачи большего количества энергии на его вал — например, открывая клапаны паровой турбины , открывая заслонки гидравлической турбины или увеличивая настройку топливной рейки на дизельном двигателе . В поле генератора подается напряжение, и напряжение на выводах генератора отслеживается и сравнивается с системой. Величина напряжения должна быть такой же, как напряжение в системе.

Если одна машина немного не совпадает по фазе, она будет синхронизироваться с другими, но, если разность фаз велика, возникнут большие перекрестные токи, которые могут вызвать колебания напряжения и, в крайних случаях, повредить машины.

Синхронизирующие лампы

Раньше три лампочки были подключены между клеммами генератора и клеммами системы (или, в более общем смысле, к клеммам измерительных трансформаторов, подключенных к генератору и системе). При изменении скорости генератора индикаторы будут мигать с частотой биений, пропорциональной разнице между частотой генератора и частотой системы. Когда напряжение на генераторе противоположно напряжению системы (вперед или назад по фазе ), лампы будут яркими. Когда напряжение на генераторе совпадает с напряжением системы, индикаторы погаснут. В этот момент выключатель, соединяющий генератор с системой, может быть замкнут, и тогда генератор останется в синхронизме с системой.

В альтернативном методе использовалась схема, аналогичная описанной выше, за исключением того, что соединения двух ламп менялись местами либо на клеммах генератора, либо на клеммах системы. В этой схеме, когда генератор синхронизирован с системой, одна лампа будет темной, но две с переставленными соединениями будут иметь одинаковую яркость. Синхронизация на «темных» лампах была предпочтительнее «ярких», потому что на ней было легче различить минимальную яркость. Однако перегорание лампы может привести к ложному срабатыванию успешной синхронизации.

Синхроскоп

Другой ручной метод синхронизации основан на наблюдении инструмента, называемого «синхроскоп», который отображает относительные частоты системы и генератора. Стрелка синхроскопа укажет «быструю» или «медленную» скорость генератора по отношению к системе. Чтобы свести к минимуму переходной ток при включении автоматического выключателя генератора, обычно включается включение, когда стрелка медленно приближается к синфазной точке. Ошибка в несколько электрических градусов между системой и генератором приведет к мгновенному броску тока и резкому изменению скорости генератора.

Реле синхронизации

Реле синхронизации позволяют синхронизировать машину с системой без участия оператора. Сегодня это цифровые микропроцессорные приборы, но раньше применялись электромеханические релейные системы. Реле синхронизации полезно для исключения времени реакции человека из процесса или когда человек недоступен, например, на электростанции с дистанционным управлением. Синхроскопы или лампы иногда устанавливаются в качестве дополнения к автоматическим реле, для возможного использования вручную или для наблюдения за генераторной установкой.

Иногда в качестве меры предосторожности против асинхронного подключения машины к системе устанавливается реле «проверки синхронизма», которое предотвращает включение выключателя генератора, если только машина не находится в пределах нескольких электрических градусов синфазности с системой. . Реле контроля синхронизма также применяются в местах, где могут быть подключены несколько источников питания, и где важно, чтобы неупорядоченные источники случайно не подключились параллельно.

Синхронный и асинхронный двигатель отличия

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Для приведения в движение различных станков или механизмов на предприятиях тяжелой и легкой промышленности в большинстве случаев используются электродвигатели переменного тока. Электрические машины постоянного тока распространены в меньшей мере и чаще всего применяются в качестве тяговых агрегатов на городском электротранспорте, поездах, складских погрузчиках и тележках.

Чтобы достичь максимальной энергоэффективности производственных процессов, нужно правильно подходить к выбору двигателя для привода.

Синхронный и асинхронный двигатель – отличия для чайников

Конструкция асинхронных и синхронных электрических машин практически одинакова. У обоих электродвигателей есть неподвижный статор, состоящий из обмоток (катушек), которые уложены в пазы сердечника, набранного из пластин, выполненных из электротехнической стали, и подвижный ротор. Обмотки статора сдвинуты друг относительно друга на угол, равный 120°, поэтому проходящий по ним электрический ток создает вращающееся магнитное поле, которое вовлекает в движение ротор. Вот именно здесь и проявляется основное отличие этих электрических машин – конструкция ротора, от которой зависит скорость его вращения.

Читать еще:  Чем можно отмыть двигатель от мазуты в домашних условиях

Асинхронный двигатель

Ротор такого двигателя может быть короткозамкнутым или фазным.

Вне зависимости от типа ротора в этих двигателях частота вращения ротора всегда будет меньше скорости вращения магнитного поля статора. Эта разница обусловлена законами физики:

  • силовые линии магнитного поля статора, пересекая замкнутый контур ротора, индуцируют в нем электродвижущую силу, а значит и собственное магнитное поле;
  • в результате взаимодействия этих полей, имеющих одинаковую полярность, возникает крутящий момент, вызывающий вращение ротора;
  • в тот момент, когда скорости вращения магнитных полей становятся одинаковыми, возникновение ЭДС в роторе прекращается, в результате чего крутящий момент стремится к нулю;
  • как только частота вращения ротора начинает отставать от скорости вращения поля статора, возникновение ЭДС возобновляется.

Синхронный двигатель

Ротор таких двигателей комплектуется постоянными магнитами или обмотками возбуждения. Обмотки могут быть как явнополюсными, так и распределенными (уложенными в пазы ротора). Кроме того, ротор синхронной машины может иметь и короткозамкнутые обмотки.

После разгона ротора до скорости близкой к частоте вращения магнитного поля статора, на катушки полюсов через щеточно-контактный узел подается постоянное напряжение, которое возбуждает в них постоянное магнитное поле. Противоположные полюса магнитных полей притягиваются друг к другу и частота вращения ротора становится синхронной.

Разгон ротора может осуществляться с помощью вспомогательного двигателя или в асинхронном режиме, благодаря короткозамкнутой обмотке.

Недостатки и преимущества двигателей

Синхронные двигатели имеют довольно сложную конструкцию, обусловленную наличием щеточного узла. Кроме того, для их работы требуется дополнительный источник постоянного тока. Еще одним недостатком является невозможность их эксплуатации в условиях частых пусков и остановов. Однако все это компенсируется большой мощностью, высоким КПД, устойчивостью к перепадам напряжения в питающей сети и стабильной частотой вращения вала, вне зависимости от величины нагрузки на него.

Асинхронный двигатель в отличие от синхронных машин более чувствителен к колебаниям напряжения и не может сохранять номинальную скорость вращения, при увеличении нагрузки. Но простота конструкции, длительный срок эксплуатации, универсальность применения, способность работать в режиме частых включений и остановок делают эти машины наиболее распространенными в промышленном и бытовом секторе.

Варианты исполнения параллельных систем

Как уже было отмечено, выбор источника определяется конкретными производственными потребностями: характером и мощностью нагрузки, наличием/отсутствием суточных или сезонных колебаний и другими параметрами. В то же время, практическое применение находит небольшое число параллельных систем. Приведем здесь наиболее распространенные варианты использования.

  • Система из нескольких ДГУ, синхронизируемая с сетью.

Используется для обеспечения безразрывного перехода на питание от генераторов во время действия пиковых нагрузок или высоких тарифов. Одновременно выступает в качестве резервного источника при отключении сети.

  • ДЭС с регулируемой в зависимости от нагрузки мощностью.

Работает в автоматическом режиме под управлением контроллера. Обеспечивает запуск и остановку генераторов в зависимости от изменения нагрузки, заданного приоритета и ресурса каждой установки.

  • Мобильные электростанции.

Модульная конструкция (например, контейнер) используется в аварийных ситуациях, для обеспечения бесперебойного питания потребителей при проведении ремонтных работ. Позволяет легко наращивать мощность путем параллельного подключения нужного количества ДГУ и запуска их в синхронную работу.

  • Параллельный резервный источник с функцией сброса избыточной нагрузки.

Схема применяется для электропитания потребителей первой категории. По мере роста нагрузки происходит запуск генератора, синхронизация его с сетью и плавный прием нагрузки. При необходимости включаются дополнительные генераторы.

  • Параллельная схема с высокой скоростью синхронизации.

Используется для резервного питания. Обеспечивает одновременный запуск всех ДГУ в режиме самосинхронизации. Зарекомендовала себя в системах, где используются источники бесперебойного питания.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector