Двигатель внутреннего сгорания работает на установившемся режиме - Авто мастер
Avtonova37.ru

Авто мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель внутреннего сгорания работает на установившемся режиме

Принцип работы двигателя внутреннего сгорания. Какие процессы происходят в цилиндрах

Цикл работы двигателя замкнутый. Возможна организация работы ДВС с кривошипно-шатунным механизмом по двух и четырехтактному циклу. Но подавляющее большинство автомобильных двигателей внутреннего сгорания работает по четырехтактному циклу. Рассмотрим, каким образом происходит эта работа.

Но для начала немного терминологии

Коленчатый вал вращается. Соединенный с ним поршень совершает в цилиндре движение вверх — вниз. Крайние положения поршня в цилиндре называют мёртвыми точками. Это верхняя мёртвая точка (сокращенно ВМТ) и нижняя мёртвая точка (НМТ).

Перемещение поршня от одного крайнего положения до другого называется тактом. Следовательно у четырехтактного двигателя цикл работы выполняется за четыре движения поршня вверх-вниз, что соответствует двум оборотам коленчатого вала.

Если умножить площадь торца (днища) поршня на расстояние между ВМТ и НМТ получим, так называемый, рабочий объем цилиндра, обозначаемый Vh.

Если умножить рабочий объем цилиндра на количество цилиндров в двигателе получается тот самый рабочий объем двигателя. Эта цифра в литрах всегда фигурирует среди технических параметров автомобиля. Многие автопроизводители гордо выносят эту цифру на шильдик, располагая его на задней части автомобиля (часто цифру привирают).

Цифра указывающая на рабочий объем двигателя

Объем над поршнем, когда он замер в ВМТ, называют объемом камеры сгорания (Vс). Именно в этом объеме начинается горение смеси паров топлива и воздуха. Сумма объема камеры сгорания и рабочего объема цилиндра называется полным объемом цилиндра :Va = Vh + Vс.

Следующий важный параметр двигателя, это геометрическая степень сжатия. Обозначается ε. Она показывает, во сколько раз изменяется объем над поршнем, когда он перемещается от НМТ к ВМТ, ε = Va/Vc. Чем больше ε, тем выше температура и давление в смеси газов над поршнем при приближении его к ВМТ. Повышение степени сжатия делает двигатель экономичнее и увеличивает его мощность.

Но величина ε зависит от топлива, на которое рассчитан двигатель. Для двигателя, работающего на бензине ε = 6 – 10, для газовых ε = 7 – 9, для дизельных ε = 15 – 20. Отсюда видно, почему бензиновый двигатель легко переоборудовать для работы на газе. У дизелей такое высокое значение ε необходимо для того, чтобы обеспечить самовоспламенение топлива.

Ну а теперь непосредственно о рабочем цикле

Первый такт цикла носит название «впуск». Поршень движется от ВМТ к НМТ. Впускной клапан открыт, и через него в цилиндр поступают пары бензина смешанные с воздухом, так называемая горючая смесь (у дизельного двигателя – чистый воздух).

Второй такт – сжатие. Клапаны закрыты. Поршень движется от НМТ к ВМТ, рабочая смесь (горючая смесь и остатки продуктов горения от предыдущего цикла) сжимается. Когда поршень приближается в ВМТ, у бензиновых двигателей между контактами свечи зажигания проскакивает электрическая искра для поджигания смеси.

Почему искра подается не в ВМТ, а раньше?

Дело в том, что перед началом горения должны пройти реакции, подготавливающие смесь к горению. Интенсивное горение смеси должно начаться только когда поршень достигнет ВМТ. Время на подготовительные реакции всегда одинаковое, а скорость перемещения поршня изменяется при изменении оборотов коленчатого вала. Поэтому приходиться изменять момент подачи искры, изменять, так называемый «угол опережения зажигания».

Меняется угол опережения зажигания

У дизельных двигателей при приближении поршня к ВМТ через специальную форсунку в надпоршневое пространство под высоким давлением впрыскивается топливо. Пока поршень дойдет до ВМТ, топливо должно испариться, перемешаться с воздухом, приготовиться к горению и начать гореть, когда поршень окажется в ВМТ.

Время на подготовку также постоянное, поэтому на высоких оборотах топливо впрыскивается раньше. Изменяется так называемый «угол опережения впрыска».

Третий такт – рабочий ход. Клапаны закрыты. Смесь интенсивно горит, её давление, и температура резко повышаются. Под действием давления поршень движется от ВМТ к НМТ и подталкивает коленчатый вал, подпитывая его энергией.

Четвертый такт – выпуск. Выпускной клапан открыт. Поршень движется от НМТ к ВМТ и отработанные газы выдавливаются из цилиндра.

Цикл закончился и начинается следующий. Следует заметить, что подпитка энергией коленчатого вала происходит только во время такта рабочего хода. Во время всех остальных тактов поршень перемещается (так называемые насосные ходы) за счет энергии, накопленной коленчатым валом от предыдущих рабочих циклов.

Как работает двигатель внутреннего сгорания — видео:

То есть в течение двух оборотов коленчатого вала подпитка его энергией происходит только пол-оборота. Это одна из причин невысокого коэффициента полезного действия четырехтактных двигателей.

Устройство автомобилей

Работа четырехцилиндрового однорядного двигателя

Во время работы поршневого двигателя внутреннего сгорания подвижные детали, перемещаясь, вызывают появление сил и моментов сил инерции, изменяющихся в течение рабочего цикла и по модулю, и по направлению. Это вызывает неравномерность работы двигателя, выражающуюся в его вибрации, передающейся на опоры и далее на автомобиль в целом.

Действия, направленные на устранение причин вибраций, т. е. неуравновешенности двигателя во время его работы, называются уравновешиванием двигателей .
Уравновешивание двигателя сводится к созданию такой системы, в которой равнодействующие силы и их моменты постоянны по величине или равны нулю. Двигатель считается полностью уравновешенным, если при установившемся режиме работы силы и моменты, действующие на его опоры, постоянны по величине и направлению.

У всех поршневых двигателей внутреннего сгорания (ДВС) возникает реактивный момент, противоположный крутящему моменту, который называется опрокидывающим. Опрокидывающий момент передается на подмоторную раму, и, поскольку его величина изменяется во времени, вызывает вибрацию автомобиля. Значение опрокидывающего момента является функцией угла поворота коленчатого вала, также, как и значение крутящего момента, т. е. эти величины являются переменными.
По этой причине абсолютной уравновешенности поршневого ДВС достигнуть невозможно. Однако в зависимости от того, в какой степени устраняются причины, вызывающие неуравновешенность двигателя, различают двигатели полностью уравновешенные, частично уравновешенные, и неуравновешенные.

Читать еще:  Что нужно для замены грм двигателя 3s

Теоретически любые свободные силы инерции и их моменты могут быть уравновешены. Однако на практике это сопровождается значительным усложнением и удорожанием конструкции. А так как уравновешивание осуществляется не только с учетом технической, но и экономической целесообразности, то не все поршневые двигатели уравновешиваются полностью.

Способы уравновешивания двигателя

В поршневых двигателях внутреннего сгорания уравновешивают центробежные силы инерции вращающихся масс, силы инерции первого и второго порядка, а также моменты, вызываемые этими силами.

Силы инерции 1-го порядка вызываются изменением направления движения деталей поршневой группы во время работы двигателя. Эти силы достигают пиковых значений в моменты прохождения поршнем мертвых точек (при перекладке поршня).
Следствием возникновения сил 1-го порядка является поперечная вибрация двигателя, частота которой равна частоте вращения коленчатого вала. Обычно эти силы частично уравновешиваются балансирами, устанавливаемыми на коленчатом валу. Полное уравновешивание сил инерционных сил 1-го порядка с помощью балансиров невозможно, поскольку сами балансиры совершают вращательное движение, а уравновешиваемые детали поршневой группы — линейное.

Силы инерции 2-го порядка вызываются изменением по величине (по модулю) линейной скорости движения поршня в процессе перемещения его между мертвыми точками. Эти силы достигают максимального значения в середине хода поршня и вызывают поперечную вибрацию двигателя, частота которой в два раза превышает частоту вращение коленчатого вала.
Силы инерции 2-го порядка уравновесить очень сложно, и, поскольку их величина значительно меньше сил инерции 1-го порядка, чаще всего силы 2-го порядка оставляют неуравновешенными, чтобы не усложнять конструкцию двигателя.

Силы инерции первого и второго порядков и их моменты уравновешиваются подбором оптимального числа цилиндров, их расположения и выбором соответствующей схемы коленчатого вала. Если этого не достаточно, то силы инерции уравновешивают противовесами, расположенными на дополнительных валах, имеющих механическую связь с коленчатым валом. Это приводит к значительному усложнению конструкции двигателя, поэтому на практике используется редко.
В рядных двигателях уравновесить силы инерции первого и второго порядков установкой противовесов невозможно. Однако при соответствующем выборе массы противовеса можно частично перенести действие силы инерции первого порядка из одной плоскости в другую, тем самым уменьшив неуравновешенность в этой плоскости.

Центробежные силы инерции вращающихся масс можно уравновесить в двигателе с любым числом цилиндров установкой противовесов на коленчатом валу. В большинстве многоцилиндровых двигателей результирующие силы инерции уравновешиваются не установкой противовесов, а путем подбора соответствующего числа и расположения кривошипов коленчатого вала. Однако даже на уравновешенные валы устанавливают противовесы для уменьшения и более равномерного распределения нагрузки на коренные шейки и подшипники, а также для уменьшения моментов, изгибающих коленчатый вал.
Если нельзя уравновесить опрокидывающий момент, то можно уменьшить его неравномерность (амплитуду) путем снижения неравномерности крутящего момента. Это достигается увеличением числа цилиндров двигателя при равных интервалах между вспышками (тактами рабочего хода) в них.

Предусмотренная конструкторами двигателя уравновешенность может быть сведена к нулю, если не будут выполняться следующие требования к производству деталей двигателя, сборке и регулировке его узлов:

  • равенство масс поршневых групп;
  • равенство масс и одинаковое расположение центров тяжести шатунов;
  • статическая и динамическая сбалансированность коленчатого вала.

При эксплуатации двигателя необходимо, чтобы идентичные рабочие процессы во всех его цилиндрах протекали одинаково. А это зависит от состава смеси, углов опережения зажигания или впрыска топлива, наполнения цилиндров, теплового режима, равномерности распределения смеси по цилиндрам и т. д.

Балансировка коленчатого вала

Коленчатый вал, как и маховик, являясь массивной подвижной частью кривошипно-шатунного механизма, должен вращаться равномерно, без биений. Для этого выполняют его балансировку, подбор и крепление уравновешивающих грузов для обеспечения его полной динамической уравновешенности.

Кроме динамической уравновешенности существует и статическая балансировка, при которой деталь уравновешивают противовесом в произвольно выбранной плоскости, исходя из условия, что деталь будет находиться в равновесии, если ее центр тяжести лежит на оси вращения.
При статической балансировке вал устанавливают на узкие точечные опоры, и путем добавления грузов на его маховик или противовесы добиваются устойчивого равновесия в любом положении.

Динамическая балансировка обеспечивает большую точность, чем статическая. Поэтому коленчатые валы, к которым предъявляются повышенные требования относительно уравновешенности, балансируют динамически.

Динамическую балансировку выполняют на специальных балансировочных станках или стендах, оборудованных устройствами для определения нужного положения уравновешивающего груза, массу которого определяют последовательными пробами, ориентируясь по показаниям приборов.
Во время балансировки вал, закрепленный на стойках станины балансировочного стенда, приводится во вращение с помощью специального привода. При этом центробежные силы приведенных масс оказывают динамическое воздействие, вызывая колебания рамы станка на упругой опоре. Амплитуда колебаний зависит от степени неуравновешенности вала и частоты его вращения на стенде.
Балансировку коленчатого вала проводят или на резонансном режиме, или при угловых скоростях, значительно превышающих резонансные.

Переменная степень сжатия двигателя: как это работает

Прежде всего, доступная возможность изменять степень сжатия позволяет в значительной мере увеличить производительность турбомоторов с одновременным уменьшением расхода топлива. В двух словах, в зависимости от режима работы и нагрузок на ДВС топливный заряд сжимается и сгорает в самых оптимальных условиях.

Читать еще:  Газель с двигателем крайслер диагностика своими руками

Когда нагрузки на силовой агрегат минимальны, в цилиндры подается экономичная «бедная» смесь (много воздуха и мало топлива). Для такой смеси хорошо подходит высокая степень сжатия. Если же нагрузки на мотор растут (подается «богатая» смесь, в которой больше бензина), тогда закономерно возрастает риск возникновения детонации. Соответственно, чтобы этого не произошло, степень сжатия динамично уменьшается.

Что касается самой реализации схемы, фактически задача сводится к тому, что происходит физическое уменьшение рабочего объема двигателя, однако сохраняются все характеристики (мощность, момент и т.д.)

Сразу отметим, над таким решением трудились разные компании. В результате появились разные способы управления степенью сжатия, например, изменяемый объем камеры сгорания, шатуны с возможностью подъема поршней и т.д.

  • Одной из самых ранних разработок стало внедрение дополнительного поршня в камеру сгорания. Указанный поршень имел возможность перемещаться, одновременно изменяя объем. Минусом всей конструкции стала необходимость устанавливать дополнительные детали в БЦ. Также сразу проявились изменения формы камеры сгорания, горючее сгорало неравномерно и неполноценно.

По указанным причинам данный проект так и не был завершен. Такая же участь постигла и разработку, которая имела поршни с возможностью изменения их высоты. Указанные поршни разрезного типа оказались тяжелыми, еще добавились трудности касательно реализации управления высотой подъема крышки поршня и т.д.

  • Дальнейшие разработки уже не затрагивали поршни и камеру сгорания, максимум внимания был уделен вопросу подъема коленчатого вала. Другими словами, стояла задача реализовать управление высотой подъема коленвала.

Схема устройства такова, что опорные шейки вала расположены в специальных муфтах эксцентрикового типа. Указанные муфты приводятся в движение посредством шестерен, которые связаны с электрическим двигателем.

Отметим, что было построено несколько прототипов на базе 1.8-литрового турбированного агрегата от Volkswagen, степень сжатия менялась от 8 до 16. Двигатель долго испытывали, но серийным агрегат так и не стал.

  • Еще одной попыткой найти решение стал двигатель, в котором степень сжатия менялась посредством подъема всего блока цилиндров. Разработка принадлежит бренду Saab, а сам агрегат чуть даже не попал в серию. Двигатель известен как SVC, объем 1.6 литра, агрегат с 5 цилиндрами, оснащен турбонаддувом.

Мощность составила около 220 л. с., крутящий момент чуть более 300 Нм. Примечательно то, что расход горючего в режиме средних нагрузок снизился почти на треть. Что касается самого топлива, появилась возможность заливать как АИ-76, так и 98-й.

Инженеры Saab разделили блок цилиндров, выделив две условные части. В верхней находились головки и гильзы цилиндров, тогда как в нижней части коленчатый вал. Своеобразным соединением этих частей блока с одной стороны был подвижный шарнир, а с другой особый механизм, оснащенный электроприводом.

На практике сами детали для подъема верхней части блока, а также и сам защитный кожух оказались весьма слабыми элементами. Возможно, именно это помешало мотору попасть в серию и проект дальше закрыли.

  • Очередную разработку далее предложили инженеры из Франции. Турбомотор с рабочим объемом 1.5 литра получил возможность менять степень сжатия от 7 до 18 и выдавал мощность около 225 л.с. Моментная характеристика зафиксирована на отметке 420 Нм.

Конструктивно агрегат сложный, с разделенным шатуном. В той области, где шатун крепится к коленвалу, деталь оснастили особым зубчатым коромыслом. В месте соединения шатуна с поршнем также была внедрена планка-рейка зубчатого типа.

С другой стороной к коромыслу была прикреплена рейка поршня, который реализовывал управление. Система приводилась от системы смазки, рабочая жидкость проходила через сложную систему каналов, клапанов, а также имелся дополнительный электропривод.

В двух словах, перемещение управляющего поршня оказывало воздействие на коромысло. В результате менялась и высота подъема основного поршня в цилиндре. Отметим, что двигатель также не стал серийным, а проект был заморожен.

  • Следующей попыткой создать двигатель с изменяемой степенью сжатия стало решение инженеров Infiniti, а именно двигатель VCT (от англ. Variable Compression Turbocharged). В этом моторе стало возможным менять степень сжатия от 8 до 14. Особенностью конструкции является уникальный траверсный механизм.

Управляет процессом контроллер, посылая сигналы на электродвигатель. Электромотор после получения команды от блока управления смещает тягу, а система рычагов реализует смену положения, что и позволяет менять высоту подъема поршня.

В результате агрегат Infiniti VCT с рабочим объемом 2.0 литра с мощностью около 265 л.с. позволил экономить почти 30% горючего сравнительно с аналогичными ДВС, которые при этом имеют постоянную степень сжатия.

Если производителю удастся эффективно решить имеющиеся на данный момент проблемы (сложность конструкции, повышенные вибрации, надежность, высокая конечная стоимость производства агрегата и т.д.), тогда оптимистичные заявления представителей компании вполне могут воплотиться в реальность, а сам двигатель имеет все шансы стать серийным уже в 2018-2019 году.

Смазка

В двигателе внутреннего сгорания детали движутся с крайне высокой скоростью, совершая за одну секунду несколько десятков циклов работы. Это приводит не только к неизбежному повышению рабочей температуры, но и постоянному трению, которое, в свою очередь, приводит к постепенному износу металла и его истиранию.

Для того чтобы сделать трение минимальным, а износ практически незаметным, в двигатель внедряется система смазки. Роль смазки в ДВС выполняет моторное масло, которое обладает особыми свойствами и наделено присадками.

Масло для двигателя подвергается особой обработке. В ходе такой обработки от сырой нефти отсеиваются посторонние примеси, частицы и вещества. За счет этого масло получается чистым и способно выполнять свои функции максимально полно. Некоторые разновидности масел дополнительно подвергаются химической обработке при высокой температуре, в течение которой жидкость дополняется новыми свойствами и характеристиками.

Читать еще:  Установка дизельного двигателя на уаз 469 своими руками

Чтобы смазка происходила постоянно и равномерно снабжала все трущиеся детали маслом, в двигателе прокладывается система каналов. Эти каналы располагаются таким образом, что масло, циркулирующее в ДВС, обильно смазывает именно те участки, которые подвергаются наиболее сильному трению. Это позволяет снизить температуру металла и увеличить ресурс поршней, цилиндров и прочих составляющих.

Масло циркулирует за счет масляного насоса, который является неотъемлемой составляющей устройства автомобиля. Насос приводится в движение от вала двигателя и представляет собой две шестерни, которые вращаются навстречу друг другу и своими лопастями прогоняют масло в заданном направлении. Это позволяет добиться постоянной и равномерной смазки и исправной работы двигателя в любом эксплуатационном режиме.

Похожие патенты RU2204730C2

Изобретение может быть использовано в двигателестроении при эксплуатации транспортных средств. Способ управления работой транспортного двигателя внутреннего сгорания (ДВС) на режиме динамического холостого хода заключается в создании тактов выбега и разгона путем автоматического воздействия на орган топливоподачи. Создание тактов выбега и разгона осуществляется в области пониженных частот вращения коленчатого вала. Включение и выключение режима динамического холостого хода происходит по сигналам датчиков положения педали муфты сцепления и рычага переключения коробки передач. Включение режима происходит при отпущенной педали муфты сцепления и нейтральном положении рычага переключения коробки передач, а выключение — при нажатии на педаль и(или) переводе рычага из нейтрального положения в рабочее. Устройство для управления работой транспортного двигателя внутреннего сгорания на режиме динамического холостого хода содержит транспортный ДВС, задатчик скоростного режима, исполнительный механизм, блок управления режимом динамического холостого хода, датчик положения задатчика скоростного режима и включатель. Установлены контактные датчики положения педали муфты сцепления и рычага переключения передач, электрически соединенные между собой и с датчиком положения задатчика скоростного режима последовательно и включенные в цепь питания блока управления. Технический результат заключается в улучшении качества процесса перехода ДВС в составе транспортного средства с рабочего режима на динамический холостой ход и обратно. 2 с.п. ф-лы, 1 ил.

Все гениальное…

Свободнопоршневой двигатель устраняет всю механическую трансмиссию обычного двигателя, позволяя разрабатывать эффективные циклы сгорания и уменьшая количество деталей и стоимость двигателя.

Принцип действия генератора со свободным поршнем, производящим электроэнергию непосредственно из линейного движения поршня без промежуточных механических звеньев достаточно прост. Двухцилиндровый двигатель линейного генератора со свободным поршнем выполнен по оппозитной схеме и имеет поршневую группу, состоящую из двух поршней, соединенных жестким штоком. Циклически повторяющееся давление газов в процессе сгорания топлива сообщает поршневой группе возвратно-поступательное движение. В плоскости симметрии штока, между поршнями на штоке закреплена подвижная магнитная система. Она размещается внутри неподвижного статора с системой обмоток. При возвратно-поступательном движении штока с закрепленной на нем магнитной системой внутри статора вследствие взаимодействия их магнитных полей происходит возникновение электродвижущей силы в обмотках статора.

Кроме того, электрическая машина, работая в режиме двигателя, обеспечивает старт двигателя внутреннего сгорания. Электронная система управления должна осуществлять контроль движения поршней для обеспечения оптимального термодинамического цикла, а также позиционирование поршней, предотвращая их соударение с головками цилиндров.

Преимущества этого принципа преобразования энергии значительны:

  • уменьшение числа движущихся деталей за счет исключения кривошипно-шатунного механизма до одного поршневого узла;
  • повышение жесткости и механической надежности конструкции двигателя;
  • повышение ресурса и механического КПД двигателя вследствие отсутствия шатунов, что приводит к исключению боковых сил, действующих на зеркало цилиндра и уменьшению трения в цилиндропоршневой группе;
  • исключение стартера для запуска ДВС, так как электрический генератор может работать и как линейный электродвигатель;
  • возможность динамического изменения степени сжатия в каждом такте не механическими способами, а корректировкой параметров электронной системы управления;
  • возможность работы с различными видами топлива (бензин, природный газ, водород, биогаз, биотопливо) посредством электронной настройки системы управления;
  • реализация оптимальных режимов сгорания топлива, в том числе и гомогенное воспламенение бедных смесей — потенциал для снижения вредных выбросов;
  • снижение расходов на производство.

Способы впрыска топлива

В ходе эволюции подачи топлива в двигатель происходило постоянное сближение этого процесса с камерой сгорания. В наиболее современных ДВС произошло слияние точки подачи бензина и места сгорания. Теперь смесь формируется уже не в карбюраторе или впускном коллекторе, а впрыскивается в камеру напрямую. Рассмотрим все варианты инжекторных устройств.

Одноточечный вариант впрыска

Наиболее простой вариант конструкции выглядит как впрыск топлива через одну форсунку во впускной коллектор. Разница с карбюратором в том, что последний подает готовую смесь. В инжекторном варианте проходит подача топлива через форсунку. Выгода заключается в получении экономии при расходе.

Моноточечный вариант подачи топлива

Такой способ также формирует смесь вне камеры, но здесь задействованы датчики, которые обеспечивают подачу непосредственно к каждому цилиндру через впускной коллектор. Это более экономичный вариант использования топлива.

Прямой впрыск в камеру

Этот вариант пока наиболее эффективно использует возможности инжекторной конструкции. Топливо напрямую распыляется в камере. За счет этого снижается уровень вредных выхлопов, и автомобиль получает кроме большей экономии бензина увеличенную мощность.

Увеличенная степень надежности системы снижает негативный фактор, касающийся обслуживания. Но такие устройства нуждаются в качественном топливе.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector