График зависимости скорости от оборотов двигателя ваз
Настоящая мощность Лады Весты: результаты замеров на стенде
Кому-то Веста нравится, кому-то – нет. Кто-то верит в её светлое будущее, кто-то уже готов её похоронить. Но пока все эти оценки и суждения – субъективное мнение в лучшем случае и ничем не обоснованные потуги воспаленного мозга «диванных» экспертов – в худшем. Хочется оценить новую машину объективно, чтобы цифры какие-то были, что ли. «Ну не давление же в колёсах мерить!» – подумали мы и решили замерить параметры автомобиля на мощностном стенде. Метод почти научный, а это то, чего так хотелось. Веста в редакции уже есть, специалисты, согласные помочь в этом деле, откликнулись быстро, и ваш покорный слуга забрался в салон Лады для поездки на стенд. Посмотрим, что из этого вышло.
Чуть-чуть теории и истории
Давайте для начала вспомним, что такое «лошадиная сила» и ньютон, умноженный на метр. И начнём мы со второго вопроса.
Ньютон – это единица измерения силы. И представить её достаточно легко: возьмите килограммовую гирьку и сдвиньте её за одну секунду из состояния покоя на метр в сторону. Для придания ускорения один метр в секунду потребуется как раз один ньютон, правда, в нашем эксперименте мы не учитываем силу трения и другие силы, которыми можно пренебречь. Но приблизительно представить такую силу можно. Теперь чуть усложним. Представьте обычную ручную мясорубку, но с метровой рукояткой. Если к крайней точке такого рычага приложить силу, равную одному ньютону, то на шнеке мясорубки возникнет момент, равный 1 Нм (ньютон, умноженный на метр). Думаю, теперь понятие «крутящий момент» стало более понятным, причём без всяких формул, которые всё равно никто читать бы не стал. Теперь вернёмся к нашим « лошадям».
В лошадиных силах измеряют мощность, то есть работу, совершённую за единицу времени. В Международной системе единиц СИ лошадиных сил нет, для обозначения мощности используется ватт. Один ватт – это та мощность, которая необходима для того, чтобы за одну секунду совершить работу в один джоуль, то есть сдвинуть точку приложения силы в один ньютон на расстояние одного метра. Представить это чуть сложнее, чем крутящий момент, но это и понятно: вещь довольно условная. Собственно, сам Джеймс Уатт, в честь которого позже назвали единицу мощности ваттом, тоже так и не мог себе представить мощность в таком виде, поэтому обратился к лошадям. История вопроса заслуживает более подробного упоминания.
Шотландский изобретатель прославился своими паровыми машинами. Естественно, он имел желание их продавать, но для этого надо было наглядно объяснить людям преимущества своей техники, а именно – дать им возможность «пощупать» ту самую пресловутую мощность. Один из покупателей машины Уатта приобрёл её для того, чтобы вытаскивать из шахты гружёные бочки, для чего раньше пользовался парой лошадок.
И тут Уатта осенило: если всю работу делают лошади, то почему бы не измерять мощность своих машин в этих животных? И он принялся за ними наблюдать. Сейчас уже никто не скажет, сколько он смотрел на бедных лошадей, но в итоге пришёл к выводу, что бочку массой 180 килограммов (бочка по-английски «barrel», печально известный за последнее время баррель) две лошади тянут со средней скоростью две мили в час. Изобретатель перевёл баррели и мили в более мелкие величины и решил, что лошадиной силой отныне будут 380 фунтов, перемещённых на 88 футов за одну минуту.
Теперь посмотрим вот на что. Дюймовые величины неоднократно округляли, потом переводили в метрические значения и снова округляли. Работа получалась мучительная, поэтому в «метрических» странах решили, что одна лошадиная сила – это приблизительно 75 килограммов, поднятых за одну секунду на один метр вверх, причём ускорение свободного падения равно 9,80665 м/с². Последнюю величину тоже округляли все по-разному (хотя большинство из курса физики помнит число 9,8 м/с²), отчего в итоге лошадиные силы стали разниться. Сейчас они используются в России только для расчета налогов, ОСАГО и для впаривания покупателям машин с мощными (вроде бы) моторами. Собственно, последнее – это то, чего и добивался Джеймс Уатт.
Наша российская лошадиная сила – это 735,499 Вт. А вот в США и Великобритании лошади, скорее всего, были круче наших, поэтому их лошадиная сила чуть больше – 745,69988145 Вт, то есть одна наша лошадиная сила – это 1,014 их «лошадки».
Поэтому тут тяжело не вспомнить слова великого Энцо Феррари: «Лошадиные силы продают автомобили, а крутящий момент выигрывает гонки». Лошадиная сила – это условность, а вот момент – это дело другое, то, что действительно можно замерить. Впрочем, холивары на тему «момент или мощность» можно устраивать бесконечно, а может, даже и нужно. Пока перейдём ко второй части Марлезонского балета с измерением мощности.
Стенды, брутто и нетто
Наверное, многие уже поняли, что замерить непосредственно можно лишь момент, реально существующую величину, и уж только потом рассчитать мощность. Но и это далеко не всё.
В мире есть только один признанный метод определения параметров мотора: установка его на стенде отдельно от автомобиля. Только так можно снять показания с маховика, во всех остальных случаях момент считывается по результатам замеров ускорения и торможения роликов динамометрического стенда. Конечно, снимать двигатель, подключать его к стенду, затем возвращать обратно – дорого и долго, поэтому такими вещами занимаются очень редко. Да и в этом случае иногда возникают разночтения: кто-то проводит измерения со снятым навесным оборудованием (генератором, помпой и пр.), получая завышенные показания. Другой случай – это замер двигателя со всем установленным оборудованием, что даёт, конечно, несколько иные значения. В этом заключаются различия в измерении мощности нетто и брутто.
Общепринятой практикой остаётся замер на колёсном стенде. В этом случае полученная характеристика – это момент, а мощность, как мы уже поняли, можно рассчитать, зная момент и скорость. При этом таким способом можно узнать момент только на колёсах, а не на маховике двигателя. Исходя из ускорения замедлений и разгонов, высчитываются потери в трансмиссии и тот самый нужный момент на маховике.
Стенды тоже работают по разным принципам, но в тонкости их различий мы углубляться не будем, потому что у меня опасения, что и до этого абзаца добрались далеко не все. Лучше перейдём к Весте.
Долой «шиповку»
Хотя декабрь в этом году в Петербурге и похож на апрель, машина у нас «обута» в зимнюю резину. Стуча шипами по мокрому асфальту, я подъехал к боксу станции. И сразу попал в шиномонтажку: проводить замеры на установленной «шиповке» нельзя. На барабанах стенда Весту будут «разгонять» до максимальной скорости, которая по паспорту составляет 178 километров в час.
При такой частоте вращения колёс есть вероятность того, что не все шипы захотят оставаться на месте, а это чревато последствиями. Приходится «переобувать» автомобиль в летнюю резину, за что и принимаются мастера. Я в это время пользуюсь отсутствием передних колёс и разглядываю то, что ими обычно скрыто, в первую очередь – тормозные механизмы.
Ничего инопланетного я там не нахожу (кроме колодок TRW), поэтому перехожу к следующему эксперименту: хлопаю дверьми, пока машина стоит на обычных подкатных домкратах. Двери закрываются с благородными «чпоками», что радует: помнится, были в истории АВТОВАЗа (да и не только в его) машинки, которые перекашивались так, что дверь даже открывалась с трудом. Кстати, подробно о тонкостях обслуживания и ремонта Весты вы можете прочитать в соответствующей статье – это интересно.
Тем временем мастера вкручивают буксировочный крюк. Работа несложная, но вот открыть заглушку в бампере сложнее, чем бозон Хиггса. Однако через несколько минут с этим делом справились, машину загоняют на стенд. Теперь остаётся её закрепить ремнями, что и делает мастер. Последнее приготовление – подсоединение через разъем OBD. Разъём, кстати, находится в традиционном месте – под панелью со стороны водителя. Итак, устанавливаем соединение и «едем».
Крутим, вертим
Ещё до начала замера возникло опасение, связанное с роботизированной коробкой передач. Дело в том, что у некоторых автомобилей после срабатывания отсечки обороты сразу падают, и в этом случае замер не отражает действительную картину. При этом он производится, естественно, в ручном режиме «робота». Веста такой глупости не сделала и показала всё, что могла.
Итак, первый замер. Двигатель прогрет, но не слишком горячий. Специалист «разгоняет» машину на стенде и давит на педаль газа. После нескольких минут визга мотора на предельных оборотах первое испытание закончено, и мы бежим к монитору.
Ресурс ДВС и зависимость от оборотов
Если водитель будет грамотно эксплуатировать машину и держать обороты в оптимальном диапазоне, тогда удастся сохранить моторесурс и даже его увеличить.
Существует режим работы двигателя, при котором износ будет самым незначительным.
В силах автомобилиста контролировать поведение машины и задавать ей необходимый темп в плане оборотов. Под оборотами понимают оборот коленвала. Обычно этот показатель измеряется в тысячах оборотов за минуту.
Также существует понятие полки оборотов. Это диапазон оборотов двигателя, при котором мотор может использовать максимальный крутящий момент. Ведь крутящий момент фактически и является мощностью, которая доступна при тех или иных оборотах. За счёт крутящего момента удаётся совершать резкие ускорения и обгоны. То есть машина передвигается за счёт именно крутящего момента, а не мощности.
Всех водителей условно можно разделить на 3 категории относительно того, как они распоряжаются оборотами:
- Первый тип водителей. Они стараются всегда держать мотор только на низких оборотах. Такие люди уверены, что езда на низких оборотах самая оптимальная.
- Второй тип. Это автомобилисты, которые придерживаются принципа удержания средних оборотов, периодически раскручивая ДВС выше средних значений.
- Третий тип. У них мотор всегда работает на средних и повышенных оборотах, на тахометре стрелка часто гостит в красной зоне. Поддерживая высокие обороты двигателя, они считают свои действия абсолютно правильными.
Теперь следует оценить последствие той или иной манеры езди и понять, можно ли крутить мотор на высоких оборотах двигателя, и что принесёт езда на низких значениях двигателя. Как это повлияет на состояние ДВС и какие могут быть последствия.
Возникает большой вопрос касательно того, какая езда в итоге более правильная и эффективная, безопасная для двигателя и его ресурса. У эксплуатации авто на высоких и низких оборотах есть свои особенности.
Силовая установка самолета (стр. 2 )
![]() | Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 |
Анализируя вышесказанное, можно сделать выводы:
при поступательной скорости V=0 угол атаки максимальный и равен углу установки лопасти винта;
при увеличении поступательной скорости угол атаки уменьшается и становится меньше угла установки;
при большой скорости полета угол атаки лопастей может стать отрицательным;
чем больше скорость вращения воздушного винта, тем больше угол атаки его лопасти;
если скорость полета неизменна и обороты двигателя уменьшаются, то угол атаки уменьшается и может стать отрицательным.
Сделанные выводы объясняют, как изменяется сила тяги винта неизменяемого шага при изменении скорости полета и числа оборотов.
Сила тяги винта возникает в результате действия аэродинамической силы DR на элемент лопасти винта при его вращении (Рис. 7).
Разложив эту силу на две составляющие, параллельную оси вращения и параллельную плоскости вращения, получим силу ЛР и силу сопротивления вращению DХ элемента лопасти винта.
Суммируя силу тяги отдельных элементов лопасти винта и приложив ее к оси вращения, получим силу тяги винта Р.
Тяга винта зависит от диаметра винта Д, числа оборотов в секунду n, плотности воздуха r и подсчитывается по формуле (в кгс или Н)
(3.6)
где a — коэффициент тяги винта, учитывающий форму лопасти в плане, форму профиля и угла атаки, определяется экспериментально. Коэффициент тяги воздушного винта самолетов Як-52 и Як-55 В530ТА-Д35 равен 1,3.
Таким образом, сила тяги винта прямо пропорциональна своему коэффициенту, плотности воздуха, квадрату числа оборотов винта в секунду и диаметру винта в четвертой степени.
Так как лопасти винта имеют геометрическую симметрию, то величины сил сопротивления и удаления их от оси вращения будут одинаковые.
Сила сопротивления вращению определяется по формуле
(3.7)
где Схл — коэффициент сопротивления лопасти, учитывающий ее форму в плане, форму профиля, угол атаки и качество обработки поверхности;
W — результирующая скорость, м/с;
Sл — площадь лопасти;
К — количество лопастей.
Рис. 7 Аэродинамические силы воздушного винта
Рис. 8. Режимы работы воздушного винта
Сила сопротивления вращению винта относительно его вращения создает момент сопротивления вращению винта, который уравновешивается крутящим моментом двигателя:
Мтр=Хвrв (3.8)
Крутящий момент, создаваемый двигателем, определяется (в кгс-м) по формуле
(3.9)
где Ne-эффективная мощность двигателя.
Рассмотренный режим называется режимом положительной тяги винта, так как эта тяга тянет самолет вперед (Рис. 8, а). При уменьшении угла атаки лопастей уменьшаются силы Р и Х (уменьшается тяга винта и тормозящий момент). Можно достичь такого режима, когда Р=0 и X=R. Это режим нулевой тяги (Рис. 8, б).
При дальнейшем уменьшении угла атаки достигается режим, когда винт начнет вращаться не от двигателя, а от действия сил воздушного потока. Такой режим называется самовращением винта или авторотацией (Рис. 8, в).
При дальнейшем уменьшении угла атаки элементов лопасти винта получим режим, на котором сила сопротивления лопасти винта Х будет направлена в сторону вращения винта, и при этом винт будет иметь отрицательную тягу. На этом режиме винт вращается от набегающего воздушного потока и вращает двигатель. Происходит раскрутка двигателя, этот режим называется режимом ветряка (Рис. 8, г).
Режимы самовращения и ветряка возможны в горизонтальном полете и на пикировании.
На самолетах Як-52 и Як-55 эти режимы проявляются при выполнении вертикальных фигур вниз на малом шаге лопасти винта. Поэтому рекомендуется при выполнении вертикальных фигур вниз (при разгоне скорости более 250 км/ч) винт затяжелять на 1/3 хода рычага управлением шага винта.
ЗАВИСИМОСТЬ ТЯГИ ВИНТА ОТ СКОРОСТИ ПОЛЕТА. ВЛИЯНИЕ ВЫСОТЫ ПОЛЕТА НА ТЯГУ ВИНТА
С увеличением скорости полета углы атаки лопасти винта, неизменяемого шага и фиксированного, быстро уменьшаются, тяга винта падает. Наибольший угол атаки лопасти винта будет на скорости полета, равной нулю, при полных оборотах двигателя.
Соответственно уменьшается тяга воздушного винта до нулевого значения и далее становится отрицательной. Раскручивается вал двигателя. Чтобы предупредить раскрутку винта, уменьшают обороты двигателя. Если двигатель не дросселировать, то может произойти его разрушение.
Зависимость тяги винта В530ТА-Д35 от скорости полета изображена на графике Рис. 9. Для его построения замеряют тягу воздушного винта при разных скоростях. Полученный график называется характеристикой силовой установки по тяге.
ВЛИЯНИЕ ВЫСОТЫ ПОЛЕТА НА ТЯГУ ВИНТА.
Выясняя зависимость тяги от скорости полета, рассматривалась работа винта на неизменной высоте при постоянной плотности воздуха. Но при полетах на разных высотах плотность воздуха влияет на тягу воздушного винта. С увеличением высоты полета плотность воздуха падает, соответственно пропорционально будет падать и тяга винта (при неизменных оборотах двигателя). Это видно при анализе формулы (3.6).
Рис. 9 Характеристика силовой установки М-14П по тяге (для Н=500 м) самолетов Як-52 и Як-55 с воздушным винтом В530ТА-Д35
Рис. 10 Тормозящий момент воздушного винта и крутящий момент двигателя
ТОРМОЗЯЩИЙ МОМЕНТ ВИНТА И КРУТЯЩИЙ МОМЕНТ ДВИГАТЕЛЯ.
Как ранее рассматривалось, тормозящий момент винта противодействует крутящему моменту двигателя.
Для того чтобы винт вращался с постоянными оборотами, необходимо, чтобы тормозящий момент Мт, равный произведению , был равен крутящему моменту двигателя Мкр, равному произведению Fd,.т. е. Мт=Мкр или
=Fd (Рис. 10). Если это равенство будет нарушено, то двигатель будет уменьшать обороты или увеличивать.
Увеличение оборотов двигателя приводит к увеличению Мкр и наоборот. Новое равновесие устанавливается на новых оборотах двигателя.
МОЩНОСТЬ, ПОТРЕБНАЯ НА ВРАЩЕНИЕ ВОЗДУШНОГО ВИНТА
Эта мощность затрачивается на преодоление сил сопротивления вращению винта.
Формула для определения мощности воздушного винта (в л. с.) имеет вид:
(3.10)
где b — коэффициент мощности, зависящий от формы воздушного винта, числа лопастей, угла установки, формы лопасти в плане, от условия работы воздушного винта (относительной поступи)
Из формулы (3.10) видно, что потребная мощность для вращения воздушного винта зависит от коэффициента мощности, от скорости и высоты полета, оборотов и диаметра воздушного винта.
С увеличением скорости полета уменьшается угол атаки элемента лопасти воздушного винта, количество отбрасываемого назад воздуха и его скорость, поэтому уменьшается и потребная мощность на вращение воздушного винта. С увеличением высоты полета плотность воздуха уменьшается и потребная на вращение воздушного винта мощность также уменьшается.
С увеличением оборотов двигателя увеличивается сопротивление вращению воздушного винта и потребная мощность на вращение воздушного винта увеличивается.
Воздушный винт, вращаемый двигателем, развивает тягу и преодолевает лобовое сопротивление самолета, самолет движется.
Работа, производимая силой тяги воздушного винта за 1 с при движении самолета, называется тягой или полезной мощностью воздушного винта.
Тяговая мощность воздушного винта определяется по формуле
(3.11)
где Рв — тяга, развиваемая воздушным винтом; V-скорость самолета.
С увеличением высоты и скорости полета тяговая мощность воздушного винта уменьшается. При работе воздушного винта, когда самолет не движется, развивается максимальная тяга, но тяговая мощность при этом равна нулю, так как скорость движения равна нулю.
КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ВОЗДУШНОГО ВИНТА. ЗАВИСИМОСТЬ КПД ОТ ВЫСОТЫ И СКОРОСТИ ПОЛЕТА
Часть энергии вращения двигателя затрачивается на вращение воздушного винта и направлена на преодоление сопротивления воздуха, закрутку отбрасываемой струи и др. Поэтому полезная секундная работа, или полезная тяговая мощность винта, nb, будет меньше мощности двигателя Ne, затраченной на вращение воздушного винта.
Отношение полезной тяговой мощности к потребляемой воздушным винтом мощности (эффективной мощности двигателя) называется коэффициентом полезного действия (кпд) воздушного винта и обозначается h. Он определяется по формуле
(3.12)
Рис. 11 Характеристики по мощности двигателя М-14П самолетов Як-52 и Як-55
Рис. 12 Примерный вид кривой изменения располагаемой мощности в зависимости от скорости полета
Какие обороты выбрать?
Как понять, какие обороты являются оптимальными в данной ситуации? Чтобы разобраться с этим вопросом, стоит взглянуть на график мощности двигателя своего мотоцикла. Это довольно странно, но производители обычно такой график не предоставляют. К счастью, для большинства мотоциклов такой график можно найти в интернете.
В качестве примера вот график от мотоцикла Honda CB400SF
На фото изображено два графика:
- График зависимости крутящего момента от частоты вращения коленчатого вала.
- График зависимости мощности от частоты вращения коленвала.
График крутящего момента
Нетрудно заметить, что он совсем не ровный. Это значит, что двигатель на разных оборотах работает с разной эффективностью и выдает разный момент. По графику крутящего момента легко определить, в каких диапазонах оборотов двигатель работает наиболее эффективно.
График мощности
Касательно мощности, это ни что иное как произведение крутящего момента на скорость вращения коленвала, выраженную в радианах в секунду. Мощность получается в Ваттах. Если мы хотим оперировать более привычными лошадиными силами и оборотами в минуту – то, чтобы получить мощность, надо момент умножить на обороты и поделить на 7032. Это к вопросу о том, что лучше и нужнее – мощность или крутящий момент. На самом деле у двигателя, у которого крутящий момент на каких-то оборотах больше и мощность на этих же оборотах будет больше.
То есть сама постановка вопроса – что лучше, мощность или крутящий момент некорректна без указания задач и желаемого рабочего диапазона оборотов.
1. Автомобиль за 10 сек увеличил скорость с 18 км / ч до 36 км / ч.
Определить ускорение автомобиля и его перемещение.
2. По графику скорости определить : начальную скорость и ускорение.
Написать уравнение скорости и уравнение движения.
3. По уравнению движения x = — 10 + 12t — 2(t) ^ 2 определить начальную координату тела, его начальную скорость и ускорение.
Написать уравнение скорости и построить график зависимости скорости от времени.
Выводы
1). Все, что лежит:
- выше оси t – положительное;
- ниже оси t – отрицательное;
- на горизонтальной оси t – равно нулю.
2). Когда ускорение, или скорость направлены против оси, они будут отрицательными, т. е. будут лежать ниже горизонтальной оси t. Если график ускорения лежит на горизонтальной оси, то ускорение отсутствует (т. е. равно нулю, нулевое).
3). Если скорость не меняется, ускорения нет.
- График x(t) координаты – это прямая линия.
- График v(t) скорости – горизонтальная прямая.
- График a(t) ускорения лежит на оси t.
4). Если скорость растет, ускорение и скорость направлены в одну и ту же сторону.
- График x(t) координаты – это правая ветвь параболы.
- График v(t) скорости – наклонная прямая.
- График a(t) ускорения – горизонтальная прямая.
5). Если скорость уменьшается, ускорение и скорость направлены в противоположные стороны.
- График x(t) координаты – это левая ветвь параболы.
- График v(t) скорости – наклонная прямая.
- График a(t) ускорения – горизонтальная прямая.
Правильные передачи и оптимальные обороты на мотоцикле
Задача 1: максимально быстро разогнаться
Допустим, наша задача максимально быстро разогнаться. Для максимально быстрого разгона двигатель должен совершить как можно больше работы за минимальное время. Иными словами нам требуется наибольшая мощность. Смотрим график мощности, видим, что зона максимума находится в пределах 6-7 тысяч оборотов. Соответственно, наша задача во время разгона с помощью переключения передач поддерживать обороты в районе 6-7 тысяч.
Задача 2: спокойно разогнаться
Теперь, что если нам надо разогнаться, но не супер быстро, а так, спокойно? Особого смысла выдавливать максимальную мощность нет, можно немного сэкономить топливо и ресурс и переключаться так, чтобы держать двигатель в области максимального крутящего момента. В данном случае это 5-6тысяч.
Задача 3: ехать с постоянной скоростью
В случае если мы вообще никуда не разгоняемся, а просто едем с постоянной скоростью, то большая мощность нам не требуется. В этом случае имеет смысл держать обороты в зоне первого пика крутящего момента, в данном случае это примерно от 2800 до 3400. Держать обороты ниже нет особого смысла, потому что топливно-воздушная смесь начинает сгорать неоптимально и повышается расход бензина. А в случае, если понадобится быстро ускориться, придется ждать, пока двигатель раскрутится до оптимальных оборотов. Насчёт движения с постоянной скоростью ещё стоит сказать, что где-то после 80-90км/ч мощность, затрачиваемая на преодоление сопротивления воздуха, начинает очень быстро расти и удваивается где-то на каждые 40км/ч. То есть, например, на 160 требуется в 4 раза больше мощности чем на 80, хотя скорость выше всего в 2 раза. Аналогично и при езде в горку. Даже если мотоцикл позволяет держать низкие обороты, лучше всё равно переключиться на пониженную, чтобы иметь запас по ускорению.