Avtonova37.ru

Авто мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство и принцип работы двигателя внутреннего сгорания физика

ЛЕКЦИЯ 10 Тема: ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ.

ЛЕКЦИЯ 10

Тема: ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ.

1. Определение двигателей внутреннего сгорания.

2. Классификация ДВС.

3. Общее устройство ДВС.

4. Основные понятия и определения.

1. Определение двигателей внутреннего сгорания.

Двигатели внутреннего сгорания (ДВС) называют поршневой тепловой двигатель, в котором процессы сгорания топлива, выделение теплоты и превращение её в механически работу происходит непосредственно в его цилиндре.

2. Классификация ДВС

По способу осуществления рабочего цикла ДВС подразделяются на две большие категории:

1) четырёхтактные ДВС, у которых рабочий цикл в каждом цилиндре совершается за четыре хода поршня или два оборота коленчатого вала;

2) двухтактные ДВС, у которых рабочий цикл в каждом цилиндре совершается за два хода поршня или один оборот коленчатого вала.

По способу смесеобразования четырёхтактные и двухтактные ДВС различают:

1) ДВС с внешним смесеобразованием, в которых горючая смесь образуется за пределами цилиндра (к ним относятся карбюраторные и газовые двигатели);

2) ДВС с внутренним смесеобразованием, в которых горючая смесь образуется непосредственно внутри цилиндра (к ним относятся дизели и двигатели с впрыском лёгкого топлива в цилиндр).

По способу воспламенения горючей смеси различают:

1) ДВС с воспламенением горючей смеси от электрической искры (карбюраторные, газовые и с впрыском лёгкого топлива);

2) ДВС с воспламенением топлива в процессе смесеобразования от высокой температуры сжатого воздуха (дизели).

По виду применяемого топлива различают:

1) ДВС, работающие на легком жидком топливе (бензине и керосине);

2) ДВС, работающие на тяжёлом жидком топливе (газойле и дизельном топливе);

3) ДВС, работающие на газовом топливе (сжатый и сжиженный газ; газ, поступающий из специальных газогенераторов, в которых при недостатке кислорода сжигается твёрдое топливо – дрова или уголь).

По способу охлаждения различают:

1) ДВС с жидкостным охлаждением;

2) ДВС с воздушным охлаждением.

По числу и расположению цилиндров различают:

1) одно и многоцилиндровые ДВС;

2) однорядные (вертикальные и горизонтальные);

3) двурядные ( -образные, с противолежащими цилиндрами).

По назначению различают:

1) транспортные ДВС, устанавливаемые на различных транспортных средствах (автомобили, тракторы, строительные машины и др. объекты);

3) специальные ДВС, играющие как правило вспомогательную роль.

3. Общее устройство ДВС

Широко используемые в современной технике ДВС состоят из двух основных механизмов: кривошипно-шатунного и газораспределительного; и пяти систем: системы питания, охлаждения, смазки, пуска и зажигания (в карбюраторных, газовых и двигателях с впрыском лёгкого топлива).

Кривошипно-шатунный механизм предназначен для восприятия давления газов и преобразования прямолинейного движения поршня во вращательное движение коленчатого вала.

Механизм газораспределения предназначен для заполнения цилиндра горючей смесью или воздухом и для очистки цилиндра от продуктов сгорания.

Механизм газораспределения четырёхтактных двигателей состоит из впускного и выпускного клапанов, приводимых в действие распределительным (кулачковым валом, который через блок шестерен приводится во вращение от коленчатого вала. Скорость вращения распределительного вала вдвое меньше скорости вращения коленчатого вала.

Механизм газораспределения двухтактных двигателей как правило выполнен в виде двух поперечных щелей (отверстий) в цилиндре: выпускной и впускной, открываемых последовательно в конце рабочего хода поршня.

Система питания предназначена для приготовления и подачи в запоршневое пространство горючей смеси нужного качества (карбюраторные и газовые двигатели) или порций распыленного топлива в определённый момент (дизели).

В карбюраторных двигателях топливо с помощью насоса или самотёком поступает в карбюратор, где смешивается с воздухом в определённой пропорции и .через впускной клапан или отверстие поступает в цилиндр.

В газовых двигателях воздух и горючий газ смешиваются в специальных смесителях.

В дизельных двигателях и ДВС с впрыском лёгкого топлива подача топлива в цилиндр осуществляется в определённый момент как правило с помощью плунжерного насоса.

Система охлаждения предназначена для принудительного отвода тепла от нагретых деталей: блока цилиндров, головки блока цилиндров и др. В зависимости от вида вещества отводящего тепло, различают жидкостные и воздушные системы охлаждения.

Жидкостная система охлаждения состоит из каналов окружающих цилиндры (жидкостная рубашка), жидкостного насоса, радиатора, вентилятора и ряда вспомогательных элементов. Охлажденная в радиаторе жидкость с помощью насоса подаётся в жидкостную рубашку, охлаждает блок цилиндров, нагревается и вновь попадает в радиатор. В радиаторе жидкость охлаждается за счёт набегающего потока воздуха и потока, создаваемого вентилятором.

Воздушная система охлаждения представляет собой оребрение цилиндров двигателя, обдуваемое набегающим или создаваемым вентилятором потоком воздуха.

Система смазки служит для непрерывного подвода смазки к узлам трения.

Система пуска предназначена для быстрого и надёжного пуска двигателя и представляет собой как правило вспомогательный двигатель: электрический (стартер) или маломощный бензиновый).

Система зажигания применяется в карбюраторных двигателях и служит для принудительного воспламенения горючей смеси с помощью электрической искры, создаваемой в свече зажигания, ввернутой в головку цилиндра двигателя.

Читать еще:  Форд куга 2 как часто меняют масло в двигателе
4. Основные понятия и определения

Верхней мёртвой точкой – ВМТ, называют положение поршня, наиболее удалённое от оси коленчатого вала.

Нижней мёртвой точкой – НМТ, называют положение поршня, наименее отдалённое от оси коленчатого вала.

В мёртвых точках скорость поршня равна , т.к. в них изменяется направление движения поршня.

Перемещение поршня от ВМТ к НМТ или наоборот называется ходом поршня и обозначается .

где – радиус кривошипа коленчатого вала.

Ряд периодически повторяющихся процессов в каждом цилиндре двигателя, в результате которых происходит преобразование тепловой энергии, выделяющейся при горении горючей смеси, в механическую работу называется циклом или рабочим процессом двигателя.

Часто рабочего цикла двигателя, совершаемого за один ход поршня называется тактом.

Объём, описываемый поршнем при перемещении из ВМТ в НМТ называют рабочим объёмом цилиндра и обозначают ()

где – диаметр цилиндра;

– ход поршня.

Сумму рабочих объёмов всех цилиндров двигателя называют рабочим объёмом двигателя или литражом двигателя и обозначают через :

где – число цилиндров двигателя.

Объём полости цилиндра при нахождении поршня в ВМТ называют объёмом камеры сгорания и обозначают .

Объём полости цилиндра при нахождении поршня в НМТ называют полным объёмом цилиндра и обозначают .

Степенью сжатия двигателя называют отношение полного объёма цилиндра к объёму камеры сгорания

Степень сжатия показывает во сколько раз уменьшается объём запоршневого пространства при перемещении поршня из НМТ в ВМТ. Как будет показано в дальнейшем степень сжатия в значительной мере определяет экономичность (КПД) любого ДВС.

Графическая зависимость давления газов в запоршневом пространстве от объёма запоршневого пространства, перемещения поршня или угла поворота коленчатого вала носит название индикаторной диаграммы двигателя.

5. Топлива ДВС

5.1. Топливо для карбюраторных двигателей

В карбюраторных двигателях в качестве топлива применяют бензин. Основной тепловой показатель бензина – его низшая теплота сгорания (около 44 МДж/кг). Качество бензина оценивают по его основным эксплуатационно-техническим свойствам: испаряемости, антидетонационной стойкости, термоокислительной стабильности, отсутствию механических примесей и воды, стабильности при хранении и транспортировке.

Испаряемость бензина характеризует способность его переходить из жидкой: фазы в паровую. Испаряемость бензина определяют по его фракционному составу, который находится его разгонкой при различной температуре. Об испаряемости бензина судят по температурам выкипания 10, 50 и 90% бензина. Так, например, температура выкипания 10% бензина характеризует его пусковые качества. Чем больше испаряемость при малых температурах, тем лучше качество бензина.

Бензины имеют различную антидетонационную стойкость, т.е. различную склонность к детонации. Антидетонационная стойкость бензина оценивается октановьм числом (ОЧ), которое численно равно процентному содержанию по объему изооктана в смеси изооктана и гептана, разноценной по детонационной стойкости данному топливу. ОЧ изооктана принимают за 100, а гептана – за нуль. Чем выше ОЧ бензина, тем меньше его склонность к детонации.

Для повышения ОЧ к бензину добавляют этиловую жидкость, которая состоит из тетраэтилсвинца (ТЭС) – антидетонатора и дибромэтена – выносителя. Этиловую жидкость добавляют к бензину в количестве 0,5-1 см 3 на 1 кг бензина. Бензины с добавкой этиловой жидкости называют этилированными, они ядовиты, и при их использовании необходимо соблюдать меры предосторожности. Этилированный бензин окрашен в красно-оранжевый или сине-зеленый цвет.

Бензин не должен содержать коррозирующих веществ (серы, сернистых соединений, водорастворимых кислот и щелочей), так как присутствие их приводит к коррозии деталей двигателя.

Термоокислительная стабильность бензина характеризует его стойкость против смоло- и нагарообразования. Повышенное нагаро- и смолообразование вызывает ухудшение отвода теплоты от стенок камеры сгорания, уменьшение объема, камеры сгорания и нарушение нормальной подачи топлива в двигатель, что приводит к снижению мощности и экономичности двигателя.

Бензин не должен содержать механических примесей и воды. Присутствие механических примесей вызывает засорение фильтров, топливопроводов, каналов карбюратора и увеличивает износ стенок цилиндров и других деталей. Наличие воды в бензине затрудняет пуск двигателя.

Стабильность бензина при хранении характеризует его способность сохранять свои первоначальные физические и химические свойства при хранении и транспортировке.

Автомобильные бензины маркируются буквой А с цифровых индексом, показывают значение ОЧ. В соответствии с ГОСТ 4095-75 выпускаются бензины марок А-66, А-72, А-76, АИ-93, АИ-98.

5.2. Топливо для дизельных двигателей

В дизельных двигателях применяют дизельное топливо, являющееся продуктом переработки нефти. Топливо, используемое в дизельных двигателях, должно обладать следующими основными качествами: оптимальной вязкостью, низкой температурой застывания, высокой склонностью к воспламенению, высокой термоокислительной стабильностью, высокими антикоррозионными свойствами, отсутствием механических примесей и воды, хорошей стабильностью при хранении и транспортировке.

Вязкость дизельного топлива влияет на процессы топливоподачи и распыливания. При недостаточной вязкости топлива увенчивается утечка, его через зазоры в распылителях форсунки и в нерцизионных парах топливного насоса, а при высокой ухудшаются процессы топливоподачи, распыливания и смесеобразования в двигателе. вязкость топлива зависит от температуры. Температура застывания топлива влияет на процесс подачи топлива из топливного бака. в цилиндры двигателя. Поэтому топливо должно иметь низкую температуру застывания.

Читать еще:  Устройство и принцип работы системы охлаждения двигателей камаз

Склонность топлива к воспламенению влияет на протекание процесса сгорания. Дизельные топлива., обладающие высокой склонностью к воспламенения, обеспечивают плавное протекание процесса сгорания, без резкого повышения давления, воспламеняемость топлива оценивают цетановым числом (ЦЧ), которое численно равно процентному содержанию по объему цетана в смеси цетана и альфаметилнафталина, равноценной по воспламеняемости данному топливу. Для дизельных топлив ЦЧ = 40-60.

Термоокислительная стабильность дизельного топлива характеризует его стойкость против смоло- и нагарообразования. Повышенное нагаро- и смолообразование вызывает ухудшение отвода теплоты от стенок камеры сгорания и нарушение подачи топлива через форсунки в двигатель, что приводит к снижению мощности и экономичности двигателя.

Дизельное топливо не должно содержать коррозирующих веществ, так как присутствие их приводит к коррозии деталей топливоподающей аппаратуры и двигателя. Дизельное топливо не должно содержать механических примесей и воды. Присутствие механических примесей вызывает засорение фильтров, топливопроводов, форсунок, каналов топливного насосе, и увеличивает износ деталей топливной аппаратуры двигателя. Стабильность дизельного топлива характеризует его способность сохранять свои начальные физические и химические свойства при хранении и транспортировке.

Для автотракторных дизелей применяют выпускаемые промышленностью топлива: ДЛ – дизельное летнее (при температуре выше 0°С), ДЗ – дизельное зимнее (при температуре до -30°С); ДА – дизельное арктическое (при температуре ниже – 30°С) ( ГОСТ 4749-73).

Введение

Все тела обладают внутренней энергией — земля, камни, облака. Однако получить их внутреннюю энергию довольно сложно, а порой и невозможно. Самый простой способ использования внутренней энергии для нужд человека — это использование внутренней энергии только некоторых, образно говоря, «горючих» и «горячих» тел. В том числе: нефть, уголь, горячие источники вблизи вулканов, теплые океанские течения и т.д. Рассмотрим один из примеров использования преобразования внутренней энергии этих тел в механическую энергию.

Я сделал своим делом изучение истории и развитие двигателей внутреннего сгорания. Более подробно изучить конструкцию и типы двигателей внутреннего сгорания. Рассмотрение принципа работы двигателей внутреннего сгорания.

Актуальность этой темы заключается в том, что двигатели внутреннего сгорания играют важную роль в жизни человека.

Применение двигателей внутреннего сгорания чрезвычайно разнообразно: они приводят в движение самолеты, моторные суда, легковые автомобили, тракторы, тепловозы. Мощные двигатели внутреннего сгорания установлены на речных и морских судах. Несмотря на то, что двигатели внутреннего сгорания являются очень несовершенным типом тепловых машин (низкий КПД, громкий шум, токсичные выбросы, меньше ресурсов) из-за их автономности (в требуемом топливе содержится гораздо больше энергии, чем в лучших электрических батареях), двигатели внутреннего сгорания очень распространены, например, на транспорте.

Работа карбюратора

Формирование топливной смеси в машинах первой половины прошлого века происходило с помощью карбюратора. Чтобы понять, как работает двигатель внутреннего сгорания, нужно знать, что автомобильные инженеры сконструировали топливную систему так, что в камеру сгорания подавалась уже подготовленная смесь.

Ее формированием занимался карбюратор. Он в нужных соотношениях перемешивал бензин и воздух и отправлял это все в цилиндры. Такая относительная простота конструкции системы позволяла ему долгое время оставаться незаменимой частью бензиновых агрегатов. Но позже его недостатки стали преобладать над достоинствами и не обеспечивать повышающихся требований к автомобилям в целом.

Недостатки карбюраторных систем:

  • нет возможности обеспечивать экономные режимы при внезапных переменах режимов езды;
  • превышение лимитов вредных веществ в выхлопных газах;
  • низкая мощность автомобилей из-за несоответствия подготовленной смеси состоянию автомобиля.

Компенсировать эти недостатки попытались прямой подачей бензина через инжекторы.

Водородный двигатель: дальнейшие перспективы

Сегодня над созданием экологичных двигателей трудятся многие компании. Некоторые идут по пути создания двигателей-гибридов, другие делают ставку на электромобили и т.д. Что касается водородных установок, в плане экологии и производительности данный вариант также может в ближайшее время составить конкуренцию ДВС на бензине, газе или дизтопливе.

Водородные двигатели показали себя несколько лучше, чем самые продвинутые электрокары. Например, японская модель Honda Clarity. Единственное, остался такой недостаток, как способы и возможности заправки. Дело в том, что инфраструктура водородных заправочных станций не особенно развита, причем в мировом масштабе.

Дополнительно стоит отметить модель Toyota Mirai. Автомобиль работает только на водороде, одного бака хватает на 600 км. Водородные двигатели еще встречаются на отечественной модели «Нива», а также устанавливаются корейцами на специальную версию внедорожника Hyundai Tucson.

Как видно, с двигателем на водороде активно экспериментируют многие производители, однако такое решение все равно имеет много недостатков. При этом некоторые минусы сильно мешают массовой популяризации.

Прежде всего, это безопасность и сложность транспортировки такого топлива. Важно понимать, что водород весьма горюч и взрывоопасен даже при относительно невысоких температурах. По этой причине его сложно хранить и перевозить. Получается, необходимо строить особые водородные резервуары для авто с данным типом двигателя. Как результат, на практике водородных заправок очень мало.

Читать еще:  Что означают эти цифры в номере двигателя

К этому также можно добавить определенную сложность и высокие расходы на ремонт и обслуживание водородного агрегата, а также необходимость в подготовке и обучении большого количества высококвалифицированного персонала. Если же говорить о самом авто на водороде и его эксплуатационных характеристиках, наличие водородной установки делает машину более тяжелой, закономерно ухудшается управляемость.

Двигатели внутреннего сгорания делятся на:

  1. Поршневой ДВС.
  2. Роторно-поршневой ДВС.
  3. Газотурбинный ДВС.

Поршневой двигатель внутреннего сгорания — самый популярный среди вышеперечисленных двигателей, он завоевал мировое признание и уже много лет лидирует в автоиндустрии. Предлагаю более детально рассмотреть устройство ДВС, а также принцип его работы.

К преимуществам поршневого двигателя внутреннего сгорания можно отнести:

  1. Универсальность (применение на различных транспортных средствах).
  2. Высокий уровень автономной работы.
  3. Компактные размеры.
  4. Приемлемая цена.
  5. Способность к быстрому запуску.
  6. Небольшой вес.
  7. Возможность работы с различными видами топлива.

Кроме «плюсов» имеет двигатель внутреннего сгорания и ряд серьезных недостатков, среди которых:

  1. Высокая частота вращения коленвала.
  2. Большой уровень шума.
  3. Слишком большой уровень токсичности в выхлопных газах.
  4. Маленький КПД (коэффициент полезного действия).
  5. Небольшой ресурс службы.

Двигатели внутреннего сгорания различаются по типу топлива, они бывают:

  1. Бензиновыми.
  2. Дизельными.
  3. А также газовыми и спиртовыми.

Последние два можно назвать альтернативными, поскольку на сегодняшний день они не получили широкого применения.

Спиртовой ДВС работающий на водороде — самый перспективный и экологичный, он не выбрасывает в атмосферу вредный для здоровья «СО2», который содержится в отработанных газах поршневых двигателей внутреннего сгорания.

Поршневой ДВС состоит из следующих подсистем:

  1. Газораспределительный механизм (ГРМ).
  2. Кривошипно-шатунный механизм (КШМ).
  3. Система впуска.
  4. Топливная система.
  5. Система смазки.
  6. Система зажигания (в бензиновых моторах).
  7. Выпускная система.
  8. Система охлаждения.
  9. Система управления.

Корпус двигателя состоит из нескольких частей, в которые входят: блок цилиндров, а также головка блока цилиндров (ГБЦ). Задача КШМ — преобразовать возвратно-поступательные движения поршня во вращательные движения коленвала. Газораспределительный механизм необходим ДВС для обеспечения своевременного впуска в цилиндры топливно-воздушной смеси и такой же своевременный выпуск отработанных газов.

Впускная система служит для своевременной подачи воздуха в двигатель, который необходим для образования топливно-воздушной смеси. Топливная система осуществляет подачу в двигатель топлива, в тандеме две этих системы работают над образованием топливно-воздушной смеси после чего она подается посредством системы впрыска в камеру сгорания.

Воспламенение топливно-воздушной смеси происходит благодаря системе зажигания (в бензиновых ДВС), в дизельных моторах воспламенение происходит за счет сжатия смеси и свечей накала.

Система смазки как уже понятно из названия служит для смазки трущихся деталей, снижая тем самым их износ, увеличивая срок их службы и отводя тем самым от их поверхностей температуру. Охлаждение нагревающихся поверхностей и деталей обеспечивает система охлаждения, она отводит температуру при помощи охлаждающей жидкости по своим каналам, которая проходя через радиатор — охлаждается и повторяет цикл. Система выпуска обеспечивает вывод отработанных газов из цилиндров ДВС посредством выхлопной системы, которая входит в состав этой системы, снижает шум сопровождаемый выброс газов и их токсичность.

Система управления двигателем (в современных моделях за это отвечает электронный блок управления (ЭБУ) или бортовой компьютер) необходима для электронного управление всеми вышеописанными системами и обеспечения их синхронности.

«Коктейль» для двигателя

Топливно-воздушная смесь — это « коктейль» из собственно топлива и воздуха . Для бензинового двигателя рабочее соотношение в среднем составляет 1 к 15, то есть 1 единица топлива и 15 единиц воздуха. Если добавить больше горючего (обогатить смесь), пострадает экономичность, если меньше (обеднить) — мощность. Со слишком обедненной или обогащенной смесью мотор вообще может отказываться заводиться.

Четвертый такт — такт выпуска

Четвертый такт работы двигателя, последний – выпускной . Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан . Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.

После четвертого такта наступает черед первого. Процесс повторяется циклически . А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов.

РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector