Устройство и принцип работы коллекторного двигателя постоянного тока - Авто мастер
Avtonova37.ru

Авто мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство и принцип работы коллекторного двигателя постоянного тока

Что такое коллекторный двигатель постоянного тока и как он работает

Коллекторные электродвигатели довольно распространены в быту и на производстве. Они используются для привода различных механизмов, электроинструмента, в автомобилях. Отчасти популярность обусловлена простой регулировкой оборотов ротора, но есть и некоторые ограничения их применения и конечно же недостатки. Давайте разберемся что такое коллекторный двигатель постоянного тока (КДПТ), какие бывают разновидности данного вида электродвигателей и где они используются.

  • Определение и устройство
  • Принцип действия
  • Виды КДПТ и схемы соединения обмоток
  • Схема подключения и реверс
  • Сфера применения
  • Достоинства и недостатки

Как они работают?

Коллекторные двигатели постоянного тока представляют собой простые устройства, состоящие из нескольких частей.

Коллекторные двигатели постоянного тока состоят всего из нескольких основных частей.

Вокруг корпуса двигателя расположены магниты статора. Это постоянные магниты, положительные с одной стороны и отрицательные с другой. В середине двигателя, соединенного с валом двигателя, находятся, по меньшей мере, три проволочных обмотки, соединенных с металлическими пластинами, которые называются якорем.

На противоположной от вала двигателя стороне обмоток расположен коллектор (от которого в русскоязычном варианте этот тип двигателя получил свое название) – пара металлических пластин, прикрепленных к обмоткам. Наконец, щетки (в англоязычном варианте этот тип двигателя называется «brushed», «щеточный») также расположены на стороне двигателя, противоположной валу двигателя.

Щетки создают физический контакт с коллектором. Когда на щетки подается постоянное напряжение, это напряжение передается на коллектор, который, в свою очередь, питает обмотки. Это входное напряжение генерирует магнитное поле вокруг якоря.

Левая сторона якоря отталкивается от левого магнита статора в направлении магнита справа. А правая сторона якоря отталкивается от правого магнита влево.

При постоянном изменении полярности магнитного поля вокруг якоря вал будет постоянно вращаться.

Коллекторный двигатель постоянного тока

Преобразование электрического тока в механическое движение (вращение) осуществляется электромеханическим преобразователем энергии — электрической машиной. Принцип работы, которой, основан на явлениях электромагнитной индукции и силы Ампера, действующей на проводник с током, движущийся в магнитном поле.

Электрические машины делятся по видам преобразования энергии:

• Генератор — преобразует механическую энергию в электрическую и тепло;
• Электрический двигатель — преобразует электрическую энергию в механическую работу и тепло;
• Электромеханический преобразователь (трансформатор) — преобразуют электрическую энергию одного вида в электрическую энергию другого вида, отличающуюся по напряжению, частоте и другим параметрам;
• Электромагнитный тормоз — механическая и электрическая энергии преобразуются в тепло.

В большинстве случаев электрическая машина состоит из двух элементов рис. 1;
• Ротор (якорь) — вращающаяся часть, состоит из обмотки якоря и коллекторного узла;
• Статор — неподвижная часть, состоит из источника магнитного поля. Постоянный магнит или электромагнит.

Между ротором и статором присутствует воздушный зазор, который служит их разделителем.

Электрические машины делятся на:

КоллекторныеБесколлекторные
Постоянного токаСинхронные
УниверсальныеАсинхронные

Коллекторный двигатель постоянного тока

Коллекторный электродвигатель — электрическая машина, в которой датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.

Щеточно-коллекторный узел — обеспечивает электрическое соединение цепи ротора с цепями, расположенными в неподвижной части двигателя. Состоит из коллектора (набора контактов, расположенных на роторе) и щёток (скользящих контактов, расположенных вне ротора и прижатых к коллектору), рис. 2.

Обычно в маломощных моторах всего два полюса обмотки возбуждения (одна пара) и трехзубцовый якорь. Три зуба это минимум для запуска из любого положения, но чем больше зубцов тем более эффективно используется обмотка, меньше токи и более плавный момент, т.к сила является проекцией на угол, а активный участок обмотки проворачивается на меньший угол.

Читать еще:  Чем отличается масляный фильтр для бензинового двигателя от дизеля

В коллекторном электродвигателе щёточно-коллекторный узел одновременно выполняет две функции:
• является датчиком углового положения ротора (датчик угла) со скользящими контактами;
• переключателем направления тока со скользящими контактами в обмотках ротора в зависимости от углового положения ротора.

Щеточно-коллекторный узел является сам ненадежным элементом электрических машин, поскольку скользящие контакты интенсивно изнашиваются от трения.

Электродвигатели характеризуют два основных параметра — это скорость вращения вала (ротора) и момент вращения, развиваемый на валу. В общем плане оба этих параметра зависят от напряжения, подаваемого на двигатель и тока в его обмотках.

Принцип работы коллекторного двигателя постоянного тока.

Прямоугольная рамка (ротор), свободно вращающаяся вокруг своей оси, помещена между постоянными магнитами. Если через рамку пропустить ток, то на обе ее стороны начнут действовать электродинамические силы. Действие этих сил, приводит рамку в движение. Рамка будет двигаться до тех пор, пока не достигнет положения, когда щетки попадут на диэлектрический зазор между пластинами коллектора. Рамка по инерции проскочит это положение, направление тока в рамке поменяется на противоположное, но силы действующие на рамку не поменяют своего направления, и она продолжит свое вращение в том-же направлении.

Разновидности коллекторных двигателей постоянного тока :

Малой мощности (единицы Ватт), рабочее напряжение 3-9 В:
• трёхполюсной ротор на подшипниках скольжения;
• коллекторный узел из двух щёток — медных пластин;
• двухполюсной статор из постоянных магнитов.

Более мощные (десятки Ватт), рабочее напряжение 12–24 В:
• многополюсный ротор на подшипниках качения;
• коллекторный узел из двух или четырёх графитовых щёток;
• четырёхполюсный статор из постоянных магнитов.

Высокой мощности (сотни Ватт):
• Четырех полюсный статор из электромагнитов.

Подключение обмотки статора

Обмотки статора могут подключаться несколькими способами:

1. Последовательно с ротором (так называемое последовательное возбуждение, см. рис. 4

Преимущество: большой максимальный момент;

Недостаток: большие обороты холостого хода, способные повредить двигатель.

2. Параллельно с ротором (параллельное возбуждение), см. рис. 5

Преимущество: большая стабильность оборотов при изменении нагрузки;

Недостаток: меньший максимальный момент.

3. Часть обмоток параллельно с ротором, часть последовательно (смешанное возбуждение), см. рис. 6.

До некоторой степени совмещает достоинства предыдущих типов.

4. Отдельным источником питания (независимое возбуждение), см. рис. 7.

Общие достоинства коллекторных двигателей постоянного тока — простота изготовления, эксплуатации и ремонта, достаточно большой ресурс.
К недостаткам можно отнести то, что эффективные конструкции (с большим КПД и малой массой) таких двигателей являются низкомоментыми и быстроходными (сотни и тысячи оборотов в минуту), поэтому для большинства приводов (кроме вентиляторов и насосов) необходимы редукторы.

Управление коллекторными двигателями постоянного тока.

Для работы двигателя достаточно подать на него напряжения питания постоянного тока. Проблемы начинают возникать, когда появляется необходимость в регулировке скорости вращения вала такого двигателя. Нужно учитывать, что при вращении на малых скоростях, крутящий момент на валу будет то же мал. Если требуются низкие скорости вращения, то применяются редуктора.

Читать еще:  Двигатель автомобиля не работает на средних оборотах

В коллекторных двигателях постоянного тока ярко выражен пусковой ток, который превышает номинальный в несколько раз (10-40 раз). Почему это происходит? Это работает противоэдс. Когда двигатель стоит, то ток который через него может пройти зависит только лишь от двух параметров — напряжения питания и сопротивления якорной обмотки, (8).

Ioя — ток обмотки якоря;
U — напряжение питающей сети;
∑r — сопротивление обмоток якоря;

Как только двигатель начнет движение, то возникает противоЭДС — Епр. Обмотка якоря движется поперек магнитного поля статора и в ней наводится ЭДС, как в генераторе, но направлена она встречно той, что вращает двигатель. И в результате, ток через якорь резко снижается, тем больше, чем выше скорость, формула 9.

Снижение пускового тока можно добится уменьшением напряжения питания или повышением сопротивления обмотки якоря. Для повышения сопротивления обмотки якоря применяется ввод дополнительного сопротивления Rд, формула (10).

Таким образом, можно добиться величины пускового тока, в нужном диапазоне, безопасном для двигателя. Добавочное сопротивление может быть как в виде реостата, так и в виде нескольких резисторов. Это нужно для того, чтобы в процессе запуска двигателя, менять сопротивление в якорной цепи.

Епр — противоэдс, зависит от конструкции двигателя, и оборотов, формула 11.

Ce — одна из конструктивных констант. Они зависят от конструкции двигателя, числа полюсов, количества витков, толщин зазоров между якорем и статором. Нам она не особо нужна, при желании ее можно вычислить экспериментально. Главное, что она константа и на форму кривых не влияет.
Ф — поток возбуждения. т.е. сила магнитного поля статора. В моторах, где она задается постоянным магнитом это тоже константа, а в двигателях с обмоткой возбуждения, этот параметр можно менять.
n — обороты якоря.

Зависимость момента M от тока и потока, формула 12.

См — конструктивная константа.

Вот тут стоит обратить внимание, что зависимость момента от тока совершенно прямая. Т.е. просто замеряя ток, при неизменном потоке возбуждения, мы можем совершенно точно узнать величину момента.

Импульсный способ управления.

Следующий метод управления, как более перспективный, основан на применении широтно-импульсной модуляции (ШИМ). Он, действительно, самый распространенный. К двигателю подводятся импульсы неизменного по амплитуде напряжения управления U у.ном, в результате чего его работа состоит из чередующихся периодов разгона и торможения, рис 14. Если эти периоды малы по сравнению с полным временем разгона и остановки ротора, то угловая скорость ротора не успевает к концу каждого периода достигать установившихся значений и установится некоторая средняя угловая скорость. Значение при неизменных моменте нагрузки и напряжении возбуждения однозначно определяется относительной продолжительностью импульсов ε

tи — длительность импульса;
Ти — период.

С увеличением относительной продолжительности импульсов угловая скорость ротора растет (ωср>ωср).В период паузы tп ротор обязательно должен тормозиться. Если это условие не будет выполняться, то угловая скорость ротора при любом значении ω будет непрерывно увеличиваться, пока не достигнет значения угловой скорости х.х., так как во время импульса угловая скорость будет возрастать, а во время паузы — оставаться практически неизменной.
С ростом частоты управляющих импульсов амплитуда колебаний скорости уменьшается; среднее значение угловой скорости остается при этом неизменным.

Читать еще:  Что за двигатель на чери амулет а15

Схематический вид коллекторного двигателя

Одной общепринятой схемы нет. То, что вы видите, это всего один из вариантов. Схема коллекторного двигателя может быть построена так, как захочется. Есть только требования к тому, что должно быть в рамках рабочего чертежа: статор и ротор. Коллекторный двигатель переменного тока также должен оснащаться предохранителем, который не позволит ему сгореть.

Широкие возможности с электродвигателями постоянного тока

Ввиду разнообразия ассортимента сегодня возможны стабильные поставки электродвигателей постоянного тока YALU для самодвижущейся техники, электротранспорта и других видов техники и промышленного оборудования. В зависимости от задач можно подобрать один мотор или все комплектующие, необходимые для проекта.

Среди ДПТ представлены агрегаты, рассчитанные на напряжение от 12 до 48 В и силу тока до 39 А. Если вам необходима консультация по поводу выбора, обратитесь к представителям «ВКС» через онлайн-форму или свяжитесь по телефону.

Что положено в основу

Вскоре после того как было обнаружено взаимодействие магнита и проводника с электрическим током, исследователи догадались усилить электромагнитное поле, создаваемое проводником, придав последнему специальную форму. Так появился виток и рамка как разновидность витка. Рамка в поле постоянного магнита обнаружила свойство стремиться занимать только одно положение. Она всегда устанавливается своей плоскостью поперек силовых линий магнита. Если рамка может вращаться на оси, то при наличии тока она будет поворачиваться вокруг этой оси до тех пор, пока не станет поперек силовых линий магнита.

В процессе поворота ток в рамке должен течь непрерывно. До недавних пор, пока не появились полупроводниковые приборы достаточной мощности, единственным решением этого были скользящие контакты — щетки. Они скользят по контактам рамки, которые в виде пластин размещаются на поверхности цилиндра, расположенного коаксиально с рамкой. Коллектор — так называется этот цилиндр с контактами. Чтобы получить непрерывное вращение несколько рамок, и коллектор располагают на общей оси. Тогда станет возможно преодолеть устойчивое состояние каждой рамки в ее крайнем положении.

Когда рамок становится достаточно много, коллекторная сборка контактов получается все более многочисленной, а контакты узкими, в результате чего количество их увеличивается на 2 с каждой новой рамкой. Посчитав количество пластин и разделив полученное число на 2, можно узнать количество рамок в конструкциях движков. Чтобы взаимодействие рамки с магнитом в электродвигателях получалось наиболее эффективным, все внутреннее пространство заполняется металлом — ферромагнетиком. Таким способом получаются роторы, которыми снабжены электродвигатели постоянного тока.

Видео по теме

Об устройстве и принципе работы двигателя постоянного тока в видео:

Несмотря на преобладание тока переменного, машины постоянного тока остаются востребованными. Это объясняется их экономичностью, простотой регулировки и рядом прочих достоинств. Коллекторные двигатели, в сущности, универсальны, поскольку могут работать и на переменном токе (направление тока в обмотках все время совпадает).

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector