В каком режиме работы скольжение двигателя максимально
График повторно кратковременного режима работы двигателя
3. Повторно-кратковременный режим S3 — когда кратковременные периоды работы двигателя tр чередуются с периодами отключения двигателя (паузами) tп, причем за период работы tp превышение температуры не успевает достигнуть установившихся значений, а за время паузы части двигателя не успевают охладиться до температуры окружающей среды. Общее время работы двигателя в повторно-кратковременном режиме разделяется на периодически повторяющиеся циклы продолжительностью
tц = tр+tп
При повторно-кратковременном режиме работы график нагревания двигателя имеет вид пилообразной кривой (рис. 2.11, г). При достижении двигателем установившегося значения температуры перегрева, соответствующего повторно-кратковременному режиму τуст.к, температура перегрева двигателя продолжает колебаться от τmin до τmax. При этом τуст.к меньше установившейся температуры перегрева, которая наступила бы, если режим работы двигателя был продолжительным (τуст.к τуст). Примерами повторно-кратковременного режима являются работа электроприводов лифтов, подъемных кранов, экскаваторов и других устройств, для которых характерна цикличность (чередование периодов работы с паузами). При этом продолжительность цикла tц = tр+tп не должна превышать 10 мин.
Повторно-кратковременный режим характеризуется относительной продолжительностью включения, %,
Действующим стандартом предусмотрены номинальные повторно-кратковременные режимы с ПВ 15, 25, 40 и 60 % (для продолжительного режима ПВ= 100 %). В условном обозначении повторно-кратковременного режима указывают величину ПВ, например, S3 — 40%.
При переводе двигателя из продолжительного режима (ПВ = 100%) в повторно-кратковременный режим мощность двигателя, по сравнению с его мощностью в продолжительном режиме, может быть увеличена: при ПВ = 60% на З0%, при ПВ = 40% на 60%, при ПВ = 25% — в 2 раза, при ПВ = 15 % — в 2,6 раза.
Рассмотренные три номинальных режима считаются основными. В каталогах на двигатели, предназначенные для работы в каком-либо из этих режимов, указаны номинальные данные, соответствующие режиму работы.
Помимо рассмотренных трех основных режимов, стандартом предусмотрены еще и дополнительные режимы:повторно-кратковременный режим S4 с частыми пусками, с числом включений в час 30, 60, 120 или 240;
Советуем изучить — Тест. строение атома. элементарные частицы. изотопы
повторно-кратковременный режим S5 с частыми пусками и электрическим торможением в конце каждого цикла;
перемежающийся режим S6 с частыми реверсами и электрическим торможением;
перемежающийся режим S7 с частыми пусками, реверсами и электрическим торможением;
перемежающийся режим S8 с двумя и более разными частотами вращения.
Что такое критический момент асинхронного двигателя
В рамках современной теории асинхронных электрических машин применяют ряд терминов связанных с понятием момента. Часть этих терминов относится к моменту создаваемому на валу (на роторе) электродвигателя. Другая группа терминов определяет моменты создаваемые механической нагрузкой подключенной к валу электрического двигателя.
Эти термины определяют как сам момент развиваемый двигателем, так и различный состояния момента на выходном валу двигателя. Под состоянием подразумевается значение момента в кретических точках. Например номинальный момент или пусковой момент.
Вот перечень терминов, которые нам приходилось встречать в литературе:
Электромагнитный момент под которым понимают момент ротора двигателя возникающий при воздействии электромагнитного поля. Данный термин часто заменяют синонимами: вращающий момент или крутящий момент. На нашем сайте есть более полная статья про электромагнитный момент асинхронного двигателя.
Пусковой момент — это значение момента в момент трогания ротора. Данный момент в литературе часто называют моментом трогания или начальным пусковым моментом электродвигателя. Более полную информацию можно получить в материале про пусковой момент асинхронника.
Номинальный момент — значение момента создаваемое электромагинитным полем на валу двигателя при номинальных параметрах двигателя и номинальных внешинх условиях. Дополнительные сведения про термин номинальный момент можно получить в статье про асинхронные двигатели и их номинальный момент.
Под критическим моментом понимают наивысшее или максимльно возможное значение. В случае если момент нагрузки превысит величину критического момента, то двигатель остановится. Поэтому в литературе в качестве синонима встречается так же термин: максимальный вращающий момент электродвигателя переменного тока. Данный термин подробно рассмотрен в статье про критический момент асинхронного двигателя.
Тормозной момент — момент возникающий под действием электромагнитных сил на роторо асинхронного двигателя и противоположный по знаку вращающему моменту. Часто встречается в литературе термин синоним: тормозящий момент. Подробное обсуждение понятия тормозной момент асинхронного двигателя здесь.
Момент нагрузки, называемый еще и момент сопротивления — параметр относящийся к механической системе подключенной к валу асинхронного двигателя. Здесь более полный анализ термина момент сопротивления.
Другие статьи про момент электродвигателя на нашем сайте:
Область применения
Основные сферы применения электромоторов асинхронного типа:
- для привода шпинделей и вспомогательных механизмов металлообрабатывающих станков;
- для обеспечения движения конвейерных лент;
- для вращения рабочих колес вентиляторов и насосов, перекачивающих воду и агрессивные жидкости;
- для передачи крутящего момента к лебедкам грузоподъемной техники;
- для привода механизмов в автоматических системах.
Распространенные схемы регуляторов
Существует множество частотных преобразователей для асинхронных двигателей, а также различных регуляторов для них. Самостоятельно возможно изготовить прибор для регулировки частоты, применяя транзисторы или тиристоры. Прибор работает как в быту, так и для станочного оборудования, крановых механизмов, различных регулируемых приводов агрегатов.
Мощный регулятор частоты и напряжения показан на схеме. Прибор плавно изменяет параметры привода, экономит энергию, снижает расходы на обслуживание.
Для применения этой схемы в быту, она сложная. Если использовать симистор рабочим элементом, то схема упрощается, и выглядит иначе.
Регулировка будет происходить работой потенциометра, определяюцим фазу импульса входа, и открывающего симистор.
Эффект эксплуатации станков, обрабатывающих металл, подъемных устройств также следует из вращения двигателя, как и сами его эксплуатационные параметры. В продаже имеется множество приборов для регулировки частоты, однако можно вполне собрать такой прибор собственными силами.
Кратковременный режим S2
2. Кратковременный режим S2 — когда периоды неизменной номинальной нагрузки чередуются с периодами отключения двигателя (рис. 2.11, в).
При этом периоды работы (нагрузки) двигателя tр настолько кратковременны, что температуры нагрева всех частей двигателя не достигают установившихся значений, а периоды отключения двигателя настолько продолжительны, что все части двигателя успевают охладиться до температуры окружающей среды (допускается превышение температуры не более чем на 1 ºС).
Стандартом установлена длительность периодов нагрузки 10; 30; 60 и 90 мин. В условном обозначении кратковременного режима указывается продолжительность периода нагрузки, например S2 — 30 мин.
В кратковременном режиме работают электроприводы шлюзов, разного рода заслонок, вентилей и других запорных устройств, регулирующих подачу рабочего вещества (нефть, газ, вода и др.) посредством трубопровода к объекту потребления.
Регулирование частоты вращения электродвигателей
- ВКонтакте
- ok
- YouTube
- Яндекс.Дзен
- TikTok
Порядка 70% потребляемой промышленностью мощности, приходится на электропривод. Огромное разнообразие технологических процессов диктует свои правила, вследствие чего, появилась необходимость в изменении скорости вращения электродвигателя непосредственно во время технологического процесса. В данной статье мы раскроем различные способы регулирования скорости вращения электродвигателей.
Параметры, изменив которые, мы изменим скорость двигателя переменного тока (ДПТ):
- частота напряжения;
- число пар полюсов;
- величина напряжения;
- добавочное сопротивление в цепи ротора;
- вентильный каскад.
Изменяемые параметры для ДПТ:
- напряжение питания;
- сопротивление цепи обмотки якоря;
- магнитный поток.
Методы регулирования частоты вращения электродвигателя
Далее мы подробно рассмотрим эти способы и их применимость к различным типам электродвигателей.
Частотное регулирование
Наиболее эффективный, постоянно совершенствующийся способ.
Применение: двигатели переменного тока (синхронные и асинхронные с кз ротором).
Корректируя частоту питающего напряжения, мы изменим угловую скорость магнитного поля статора, следовательно, скорость двигателя в значительном диапазоне, имея достаточно жесткие механические характеристики. Для сохранения в норме коэффициента мощности и допустимости кратковременных перегрузок, меняя частоту, следует изменять и саму величину питающего напряжения.
Преимущества способа:
- обширный диапазон регулировки;
- «жесткость» механических характеристик;
- минимум потерь «скольжения», мощности.
Недостаток — высокая стоимость (в последние годы становится менее актуально).
Регулирование изменением числа пар полюсов
Применение: т.к. промышленность не выпускает серийно синхронные двигатели с изменяемым количеством пар полюсов, будем считать, что способ актуален только для асинхронных двигателей (далее АД) с кз ротором.
Способ реализуется изменением числа пар полюсов у обмоток. Этого можно добиться, изготовив двигатель с двумя независимыми обмотками. Но этот метод приводит к удорожанию конструкции и увеличению размеров машины. Поэтому наиболее выгодным является увеличение числа пар полюсов без использования второй независимой обмотки.
Промышленностью выпускаются двухскоротсные, трёхскоростные и четырёхскоростные электродвигатели.
Достоинства:
- экономичность;
- «жёсткие» механические характеристики.
Недостатки:
- ограниченное количество возможных скоростей;
- ступенчатость переключения скоростей.
Изменение питающего напряжения
Применение: асинхронные двигатели.
Изменять напряжение на статоре можно, включая в его цепь резисторы (старый и неэкономичный способ), автотрансформаторы или тиристорные регуляторы.
При регулировании скорости изменением напряжения, критический момент пропорционален квадрату подводимого напряжения. Снижается устойчивость к кратковременным перегрузкам и КПД, поэтому метод предпочтителен при «вентиляторной» нагрузке. Еще один недостаток — малый диапазон регулирования.
Добавочное сопротивление в цепи ротора 
Применение: АД с фазным ротором.
При изменении сопротивления ротора прямо пропорционально изменяется скольжение. Но величина критического момента остается постоянной. Это позволяет подобрать сопротивления так, чтобы уравнять критический момент с пусковым, что благоприятно сказывается на пуске двигателя под нагрузкой.
Достоинства способа:
- простота реализации;
- критический момент = const;
Недостатки:
- большие потери (при изменении скорости половина мощности тратится на выделение тепла);
- малый диапазон;
- «мягкие» механические характеристики.
Асинхронный вентильный каскад
Применение: АД с фазным ротором.
Смысл регулирования каскадными схемами заключается в подаче в цепь ротора добавочной ЭДС. Изменяя добавочную ЭДС ротора, мы изменяем ток ротора, а значит его момент и скорость. Создать добавочную ЭДС, помимо устройства вентильного каскада, может и ДПТ — машинно-вентильный каскад.
Достоинства:
- Минимум сопутствующей силовой и контактной аппаратуры;
- плавность регулировок;
- малая мощность управления.
Недостатки:
- стоимость;
- низкий коэффициент мощности;
- плохая устойчивость к перегрузкам.
Изменение напряжения питания якоря
Применение: любые ДПТ.
Способ можно использовать если источником электрической энергии является генератор. Реализовать от общей сети невозможно.
Достоинства:
- плавность регулировок;
- простота пусков и торможений;
- экономичность.
Недостатки:
- необходимость трехкратного преобразования энергии→низкий КПД;
- три электрические машины в системе;
- дорогая эксплуатация.
Введение добавочного резистора в цепь якоря 
Применение: любые ДПТ.
Заключается в последовательном включении в цепь якоря регулировочного реостата. Но способ не получил распространения ввиду своей неэкономичности и плохого влияния на КПД двигателя, т.к. в цепи реостата теряется очень большое количество энергии.
Регулирование изменением магнитного потока
В цепь возбуждения двигателей параллельного и смешанного возбуждения подключается реостат. В машинах последовательного возбуждения изменение магнитного потока в обмотке возбуждения производится шунтированием этой обмотки регулируемым сопротивлением. Максимальная скорость вращения двигателя ограничивается лишь механической прочностью якоря. Скорость двигателя регулируется в диапазонах 2:1-5:1, в частных случаях 8-10:1.
Преимущества:
- минимальные потери→экономичность;
- широкий диапазон регулирования
Недостатки:
- невозможно бесконечно уменьшать ток в обмотке возбуждения, двигатель уйдет «в разнос».
Силы и моменты, действующие на ведущие колеса
На ведущие колеса автомобиля действуют силы со стороны автомобиля (т. е. со стороны двигателя посредством агрегатов трансмиссии), а также силы со стороны дороги. Обозначим силы, действующие со стороны автомобиля, буквой Р , а со стороны дороги – буквой R (рис. 3).
Реактивные силы, действующие на колеса
Тяговый момент Мт на ведущих колесах стремится сдвинуть назад верхний слой дорожного покрытия, в результате чего со стороны дороги на ведущее колесо в зоне контакта действует противоположно направленная сила Rx – горизонтально направленная касательная реакция дороги.
Так как на автомобиле используются эластичные пневматические шины, то неизбежна частичная потеря момента Мт , поэтому продольную (горизонтальную) реакцию со стороны дороги, обеспечивающую качение колеса, можно записать как разность между силой тяги и потерями в шине:
где Рш – сила, учитывающая потери энергии в шинах ведущих колес.
Таким образом, касательная реакция дороги создает силу тяги.
Автомобиль своим весом G действует на каждое колесо, передавая усилие на дорогу, и, соответственно, вызывая нормальную реакцию дороги Rz . Следует учитывать, что при наличии на колесе крутящего момента нормальная реакция Rz прикладывается не к оси симметрии опорной площадки колеса, а на некотором расстоянии αш от нее, поскольку имеет место смещение центра давления из-за эластичности шины.
Эпюра элементарных нормальных реакций дороги, показанная на рисунке 4, объясняет причину смещения точки приложения реакции Rz . Это происходит из-за того, что нормальные реакции на переднем и заднем участках опорной площадки колеса различны по величине, так как силы, возникающие в упругом материале шины при приложении и снятии нагрузки неодинаковы.
Это объясняется действием сил внутреннего трения между взаимно перемещающимися частицами материала шины. При приложении нагрузки эти силы и силы упругости направлены в одну и ту же сторону, а при снятии – в противоположные стороны.
Боковая сила Рy значительно увеличивается при криволинейном движении автомобиля или при движении по косогору. Боковая реакция Ry со стороны дороги удерживает колеса автомобиля от бокового скольжения (заноса) при движении автомобиля поперек косогора или при выполнении маневра.
Сила тяги на ведущих колесах
Сила тяги Рт на ведущих колесах может быть определена, как отношение крутящего (тягового) момента Mт , подводимого к колесам, к их радиусу r :
При этом не учитываются затраты энергии на деформацию дорожного покрытия, трение внутри шины и силы инерции, обусловленные ускорением вращающихся масс колес и деталей трансмиссии в случае неравномерного движения.
Следует учитывать, что радиус колеса вследствие эластичности шины является переменной величиной.
Различают следующие радиусы автомобильных колес:
- статический радиус колеса rст – расстояние от поверхности дороги до оси неподвижного колеса, воспринимающего вертикальную нагрузку, обусловленную силой тяжести, действующей на автомобиль (т. е. его весом G ). Значения статического радиуса приводятся заводом-изготовителем шины в технических характеристиках;
- динамический радиус колеса rд – расстояние от поверхности дороги до оси катящегося колеса. Динамический радиус колеса во время движения может превышать его статический радиус, поскольку в результате нагрева шины давление внутри нее увеличивается.
Кроме того, под действием центробежных сил с возрастанием скорости автомобиля шина растягивается в радиальном направлении, вследствие чего динамический радиус увеличивается. Динамический радиус, также, зависит от величины вертикальной нагрузки Pz . - радиус качения колеса rк – радиус условного недеформирующегося катящегося без скольжения колеса, которое имеет с данным эластичным колесом одинаковую угловую и линейную скорости.
Радиус качения колеса определяется по формуле:
где S – путь, пройденный колесом; nк – число оборотов колеса на пути S .
Если проскальзывание колеса относительно дороги отсутствует, что характерно для ведомого колеса, то радиусы rд и rк почти равны между собой. В случае полного буксования колеса его пройденный путь будет равен нулю, и тогда (согласно приведенной выше формуле) его радиус качения тоже будет равен нулю.
В случае движения колеса юзом (скольжение без вращения) число оборотов будет равно нулю, и, соответственно, радиус качения rк будет стремиться к бесконечности.
Различают еще и свободный радиус колеса rсв , который является половиной диаметра ненагруженного колеса при отсутствии его контакта с опорной поверхностью.
На дорогах с сухим покрытием скольжение ведущих колес и изменение радиуса незначительны. Поэтому радиусы статический rст , динамический rд и качения rк при расчетах считаются одинаковыми и обозначаются буквой r .