Avtonova37.ru

Авто мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В каком случае удельные потери в синхронных двигателях ниже

Электромагнитные устройства и электрические машины. Электрические трансформаторы. Информационные электрические машины. Информационные микромашины и синхронные микродвигатели , страница 18

П3 Энергетическая диаграмма синхронного генератора

Рассмотрим энергетическую диаграмму, показывающую соотношения между различными мощностями в синхронном генераторе в процессе того, как механической энергии приводного двигателя синхронного генератора преобразуется в электрическую энергию, отдаваемую генератором в сеть. (рис. 18)

Рис.18 Энергетическая диаграмма СГ

Энергии приводного двигателя соответствует затраченная мощность Р2 . Электрической энергии отдаваемой генератором в сеть соответствует полезная мощность Р1. Коэффициент полезного действия синхронного генератора . Для определенности будем считать, что возбудитель синхронного генератора находится на одном валу с индуктором, поэтому мощность, расходуемая в системе возбуждения может быть суммирована с механическими потерями на поддержание вращения ротора.

Механическая мощность, преобразуемая в зазоре машины в электромагнитную мощность , поступает в статор. Часть ее теряется в виде потерь в стали статора , а остальная передается в статорную обмотку. Электрическая мощность, отдаваемая генератором в сеть, находится после вычитания потерь в меди статорной обмотки.

Разные типы синхронных генераторов имеют разные соотношения между потерями мощности. Примерная доля потерь мощности для турбогенераторов и гидрогенераторов представлена в таблице 1.

Таблица 1. Потери мощности у турбогенераторов и гидрогенераторов

Вопросы для самоконтроля?

  1. За счет чего формируют синусоиду поля индуктора в синхронных генераторах? (1,2)
  2. На какой угол отстает МДС синусоиды поля статора от МДС ротора? (3)
  3. Какие составляющие имеет результирующая МДС в зазоре СГ?(4)
  4. Что называют реакцией якоря СГ? (5)
  5. Что называют потоком реакции якоря СГ? (6)
  6. Какие функции выполняют элементы эквивалентной схемы СГ? (7)
  7. Как ориентируют векторы МДС ротора и реакции якоря на векторных диаграммах СГ? (8)
  8. В каких случаях напряжение на зажимах синхронного генератора больше чем ЭДС холостого хода? (9)

Область применения

Область применения синхронных двигателей обусловлена рядом их особенностей, а именно:

  • — стабильностью частоты вращения как при колебании напряжения в питающей электросети, так и при изменении величины механической нагрузки на валу;
  • — возможностью работы с очень высоким коэффициентом мощности — вплоть до единицы.

Первое качество делает синхронные двигатели незаменимыми в качестве приводных для прецизионных обрабатывающих станков. Также часто синхронные двигатели используются для привода мощных насосных, компрессорных и вентиляционных установок. Этим же свойством обусловлено их практически исключительное применение в качестве гидрогенераторов и турбогенераторов на электрических станциях. Вторая особенность синхронных двигателей делает привлекательным его использование в качестве источника реактивной энергии, что позволяет гибко регулировать значение коэффициента мощности и уровня напряжения в сети. При правильном заключении договоров на электроснабжение можно получить экономию средств, имея повышенное значение косинуса-фи. При работе синхронного двигателя с коэффициентом мощности, равном единице, двигатель потребляет из сети только активную мощность, за счет чего снижаются потери мощности в питающих линиях электропередачи. Это обусловлено тем, что потери в линиях пропорциональны полной электрической мощности, а величина последней в рассматриваемом случае снижается, что происходит за счет уменьшения реактивной составляющей вплоть до нуля. Работающий на холостом ходу в режиме перевозбуждения синхронный двигатель представляет собой синхронный компенсатор.

То есть, генератор реактивной мощности, который способен обеспечивать потребность реактивной мощности узла потребления, к которому он подключен.

Мощный синхронный двигатель, оснащенный системами автоматической регулировки возбуждения с обратной связью по напряжению, а также форсирования тока возбуждения – это инструмент для регулирования и перераспределения потоков реактивной мощности и уровня напряжения в электрической сети. Выбор синхронных двигателей при проектировании и в процессе реконструкции электросетей крупных потребителей обеспечивает повышение устойчивости работы энергосистемы, разгрузку линий электропередачи, улучшение качества электроэнергии, дает возможность минимизировать затраты на покупку электрической энергии.

Читать еще:  Что за стук в двигателе 1jz ge

Переменные потери

Эти потери также называются потерями меди. Данные потери происходят из-за электрического тока, идущего по обмоткам статора и ротора. Когда нагрузка меняется, данный электрический ток также изменяется, а потому и потери эти тоже претерпевают изменения. Поэтому их и назвали переменными потерями. Их можно получить при помощи проведения теста с заблокированным ротором трёхфазного двигателя.

Основная функция асинхронного двигателя состоит в том, чтобы преобразовывать электрическую энергию в механическую энергию. В течение данного преобразования одной энергии в другую, энергия проходит через различные этапы. Данная энергия, проходящая через разные ступени, отображается на диаграмме течения энергии.

Как известно, на входе трёхфазного асинхронного двигателя трёхфазная подача. Так что эта трёхфазная подача идёт на статор трёхфазного электродвигателя.
Допустим, Pin = электрическая энергия, которая идёт на статор трёхфазного двигателя,
VL = линейное напряжение, поступающее статору трёхфазного двигателя,
IL = линейный ток,
Cos = коэффициент мощности трёхфазного двигателя.
Вход электрической энергии на статор, Pin = 3VLILcos.

Часть этой энергии на входе используется для поддержки потери статора, которыми являются потери железа статора и потери меди статора. Сохраняющаяся энергия (электроэнергия на входе – потери статора) идёт на ротор как вход на ротор.
Так что вход на ротор, P2 = Pin – потери статора (потери меди статора и потери железа статора). Теперь ротор должен преобразовать этот вход на ротор в механическую энергию, но этот завершённый вход не может быть преобразован в механический выход, поскольку он должен поддерживать потери ротора.

Бывает два типа потерь ротора, а именно потери меди и потери железа. Потери железа зависят от частоты ротора, которая очень мала, когда ротор вращается. Поэтому этим обычно пренебрегают. Так что можно сказать, что ротор имеет лишь потери меди. По этой причине вход на ротор должен поддерживать эти потери меди. После этой поддержки, оставшаяся часть входа ротора, P2 преобразовывается в механическую энергию, Pm.

Допустим, Pc будет потерями меди ротора,
I2 будет током ротора в рабочем состоянии,
R2 – сопротивлением ротора,
Pm – общая производимая механическая энергия.
Pc = 3I22R2
Pm = P2 – Pc

Теперь эта создаваемая механическая энергия идёт на нагрузку за счёт вала, но появляются некоторые механические потери, такие как потери трения и потери сопротивления воздуха. Так что общая воспроизводимая механическая энергия должна быть подана на поддержание этих потерь.

Поэтому выход образуемой энергии идёт на вал, который в конечном итоге подаёт её нагрузке, Pout.
Pout = Pm – механические потери (потери трения, а также потери, связанные с сопротивлением воздуха).
Pout зовется энергией вала. Также его называют полезной энергией.

Читать еще:  Что делать если стучат клапана 402 двигатель

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Реактивные синхронные двигатели

Синхронные реактивные электродвигатели всегда работают только в паре с преобразователем частоты и используют тот же тип управления потоком статора, что и обычный АД. Роторы данных машин изготавливают из тонколистной электротехнической стали с пробитыми пазами таким образом, что бы они намагничивались с одной стороны меньше, чем с другой. Стремление магнитного поля ротора «соединится» с вращающимся магнитным потоком статора и создает вращающий момент.

Основным плюсом реактивных синхронных электродвигателей являются незначительные потери в роторе. Таким образом, хорошо спроектированная и работающая с правильно подобранным алгоритмом управления синхронная реактивная машина вполне способна соответствовать европейским стандартам премиум класса IE4 и NEMA, не используя при этом постоянных магнитов. Снижения тепловых потерь в роторе повышает крутящий момент и увеличивает плотность мощности, по сравнению с асинхронными машинами. Эти двигатели имеют низкий уровень шума благодаря низкому уровню пульсаций момента и вибраций.

Основным недостатком является низкий коэффициент мощности по сравнению с асинхронной машиной, что приводит к большей потребляемой мощности из сети. Это увеличивает затраты и ставит перед инженером сложную задачу, стоит ли применять реактивную машину или нет для конкретной системы?

Сложность в изготовлении ротора и его хрупкость делает невозможным применение реактивных электродвигателей для высокоскоростных операций.

Синхронные реактивные машины хорошо подходят для широкого спектра промышленных применений, которые не требуют больших перегрузок или высоких скоростей вращения, а также все чаще применяются для частотно-регулируемых насосов из-за повышенной их эффективности.

Реакторный пуск

В этом случае двигатель пускается при пониженном напряжении сети с помощью реактора или трансформатора. Реакторный пуск рекомендуется в первую очередь и только при невозможности его использования допу-скается автотрансформаторный пуск.

Реакторный пуск синхронных компенсаторов ( рис. 5 — 1 ж), принятый сейчас как основной, применен для мощных машин.

Реакторный, или автотрансформаторный, пуск осуществляется подачей на обмотки электродвигателей напряжения, сниженного с помощью автотрансформатора или чаще всего реактора, которые отключаются при разгоне агрегата до подсин-хронной частоты вращения. При реакторных пусках снижаются момент, развиваемый двигателем при пуске, толчки и вибрации машины, потребляемая мощность, нагрев обмоток и падение напряжения и увеличивается время пуска.

Конденсаторный или реакторный пуск .

Пуск электродвигателей серии ВДС 325 — прямой асинхронный от сети, имеющей полное напряжение. Электродвигатели ВДС 325 имеют реакторный пуск от сети с пониженным напряжением.

Трехфазный асинхронный двигатель с кратностью начального пускового тока kj 5 6 и кратностью начального пускового момента kn — 1 3 пускается в ход при нагрузке Мв 0 5 Мн. Применим ли в этом случае реакторный пуск .

Дают возможность регулировании напряжения. При до-статичнои мощности подстанции возможен реакторный пуск или непосредственный пуск от шип.

Схема электрических соединений насосной станции должна обеспечивать прямой пуск асинхронных и синхронных электродвигателей от полного напряжения сети. Для мощных электродвигателей в соответствии с указаниями заводов-изготовителей может применяться реакторный пуск . Использование крупных синхронных электродвигателей для работы в компенсаторном режиме в перерывах водоподачи должно быть обосновано технико-экономическими расчетами.

Читать еще:  Хендай санта фе 2008 какое масло в двигатель
Вспомогательная схема токовых цепей защит электродвигателей с реакторным пуском от многофазных КЗ. а — при применении токовой отсечки. б — при применении дифференциальной защиты. М — электродвигатель. L — пусковой реактор. Ql, Q2 — выключатели. ТА1 — ТАЗ — трансформаторы тока. АК1, АК2 — комплекты токовых отсечек. АК — комплект дифференциальной защиты.| Принципиальная схема дифференциальной защиты электродвигателя М с реле.

Если применена дифференциальная защита, то в плече защиты со стороны питания с той же целью устанавливается двухфазная двухрелейная отсечка без выдержки времени, которая для повышения чувствительности выводится из действия на время пуска электродвигателя. На рис. 2.192 показаны блок-схемы токовых цепей защит электродвигателей с реакторным пуском .

Пуск синхронных компенсаторов осуществляется различными способами: асинхронный — непосредственно от сети, от разгонного двигателя, через автотрансформатор и через реактор; асинхронный пуск применяется только при малых мощностях компенсаторов. Наиболее простым способом пуска, чаще всего применяемым на практике, является реакторный пуск компенсатора . Синхронные компенсаторы типа КС до 30 000 ква включительно имеют воздушное охлаждение, а компенсатор типа КСВ-37500 ква — водородное охлаждение.

Прямая ( а и обратная ( б схемы включения пусковых автотрансформаторов.

Однако это преимущество автотрансформаторного пуска достигается ценой значительного усложнения и удорожания пусковой аппаратуры. Поэтому автотрансформаторный пуск применяется реже реакторного, при более тяжелых условиях, когда реакторный пуск не обеспечивает необходимого пускового момента.

Схема пуска синхронного двигателя с реактором.

Все аппараты управления синхронным двигателем размещаются на станциях управления. На рис. 39 показан общий вид фасада станции управления ПН7028 для синхронных двигателей с реакторным пуском . Кроме аппаратов, перечисленных при описании схемы пуска синхронного двигателя СТМ-4000-2, на станции управления показаны приборы и аппараты, применяемые в управлении двигателей.

Что это такое

Принцип действия 3-х фазного электродвигателя (асинхронного) достаточно простой. К статорной обмотке подаётся питание. В результате образуется магнитный поток, смещённый на сто двадцать градусов в фазах. Общий поток, при этом, будет вращаться.

Обмотка представляет собой замкнутый контур, в котором возникает электродвижущая сила. Магнитный поток вращает ротор по направлению статорного потока. Крутящийся электромагнит стремится выровнять вращающие скорости статорного и роторного полей.

Значение, показывающее разницу быстроты вращения статорного и роторного полей и есть скольжение. Поскольку в асинхронном электродвигателе ротор всегда крутится медленней статора, значение, обычно, не превышает единицы. Измеряется в процентах либо единицах.

Вычисляется по следующей формуле:

Здесь n1 – скорость статора, n2 – скорость ротора.

Скольжение – один из основных параметров, отображающий корректность функционирования асинхронного электродвигателя.

Суммарные, или полные потери

Суммарные, или полные потери pΣ представляют собой сумму всех потерь:

pΣ = pмх + pмн + pэл + pд(9)

В качестве иллюстрации в таблице 1 приводятся данные о потерях в машине постоянного тока при номинальной нагрузке.

Потери в генераторе постоянного тока 500 кВт, 460 В, 375 об/мин.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector