В топке теплового двигателя за цикл работы - Авто мастер
Avtonova37.ru

Авто мастер
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В топке теплового двигателя за цикл работы

В топке теплового двигателя при сжигании топлива за цикл выделилось количество теплоты равное 50 кДж КПД двигателя 20 Какую работу совершил тепловой двигатель за цикл?

Физика | 10 — 11 классы

В топке теплового двигателя при сжигании топлива за цикл выделилось количество теплоты равное 50 кДж КПД двигателя 20 Какую работу совершил тепловой двигатель за цикл.

A = кпд * Q = 0, 2 * 50 = 10 кДж.

Тепловой двигатель. Второй закон термодинамики.

Тепловой двигатель (машина)

Тепловой двигатель (машина) – это устройство, которое совершает механическую работу циклически за счет энергии, поступающей к нему в ходе теплопередачи.

Источником поступающего количества теплоты в реальных двигателях могут быть сгорающее органическое топливо, разогретый Солнцем котел, ядерный реактор, геотермальные воды и т.д.

В настоящее время наиболее распространены два типа двигателей: поршневой двигатель внутреннего сгорания (сухопутный и водный транспорт) и паровая или газовая турбина (энергетика).

Первые тепловые двигатели, широко распространившиеся в промышленности, назывались паровыми машинами. К современным тепловым двигателям можно отнести ракетные и авиационные двигатели.

Модель теплового двигателя и ее составные части

В теоретической модели теплового двигателя рассматриваются три тела: нагреватель, рабочее тело и холодильник.

Нагреватель – тепловой резервуар (большое тело), температура которого постоянна.

В каждом цикле работы двигателя рабочее тело получает некоторое количество теплоты от нагревателя, расширяется и совершает механическую работу. Передача части энергии, полученной от нагревателя, холодильнику необходима для возвращения рабочего тела в исходное состояние.

Так как в модели предполагается, что температура нагревателя и холодильника не меняется в ходе работы теплового двигателя, то при завершении цикла: нагревание-расширение-остывание-сжатие рабочего тела считается, что машина возвращается в исходное состояние.

Для каждого цикла на основании первого закона термодинамики можно записать, что количество теплоты Qнагр, полученное от нагревателя, количество теплоты |Qхол|, отданное холодильнику, и совершенная рабочим телом работа А связаны между собой соотношением:

В реальных технических устройствах, которые называются тепловыми машинами, рабочее тело нагревается за счет тепла, выделяющегося при сгорании топлива. Так, в паровой турбине электростанции нагревателем является топка с горячим углем. В двигателе внутреннего сгорания (ДВС) продукты сгорания можно считать нагревателем, а избыток воздуха – рабочим телом. В качестве холодильника в них используется воздух атмосферы или вода природных источников.

КПД теплового двигателя (машины)

Коэффициентом полезного действия теплового двигателя (КПД) называется отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Коэффициент полезного действия любого теплового двигателя меньше единицы и выражается в процентах. Невозможность превращения всего количества теплоты, полученного от нагревателя, в механическую работу является платой за необходимость организации циклического процесса и следует из второго закона термодинамики.

В реальных тепловых двигателях КПД определяют по экспериментальной механической мощности N двигателя и сжигаемому за единицу времени количеству топлива. Так, если за время t сожжено топливо массой m и удельной теплотой сгорания q, то

Для транспортных средств справочной характеристикой часто является объем V сжигаемого топлива на пути s при механической мощности двигателя N и при скорости . В этом случае, учитывая плотность r топлива, можно записать формулу для расчета КПД:

Второй закон термодинамики

Существует несколько формулировок второго закона термодинамики. Одна из них гласит, что невозможен тепловой двигатель, который совершал бы работу только за счет источника теплоты, т.е. без холодильника. Мировой океан мог бы служить для него, практически, неисчерпаемым источником внутренней энергии (Вильгельм Фридрих Оствальд, 1901).

Другие формулировки второго закона термодинамики эквивалентны данной.

Формулировка Клаузиуса (1850): невозможен процесс, при котором тепло самопроизвольно переходило бы от тел менее нагретых к телам более нагретым.

Формулировка Томсона (1851): невозможен круговой процесс, единственным результатом которого было бы производство работы за счет уменьшения внутренней энергии теплового резервуара.

Формулировка Клаузиуса (1865): все самопроизвольные процессы в замкнутой неравновесной системе происходят в таком направлении, при котором энтропия системы возрастает; в состоянии теплового равновесия она максимальна и постоянна.

Формулировка Больцмана (1877): замкнутая система многих частиц самопроизвольно переходит из более упорядоченного состояния в менее упорядоченное. Невозможен самопроизвольный выход системы из положения равновесия. Больцман ввел количественную меру беспорядка в системе, состоящей из многих тел – энтропию.

КПД теплового двигателя с идеальным газом в качестве рабочего тела

Если задана модель рабочего тела в тепловом двигателе (например, идеальный газ), то можно рассчитать изменение термодинамических параметров рабочего тела в ходе расширения и сжатия. Это позволяет вычислить КПД теплового двигателя на основании законов термодинамики.

На рисунке показаны циклы, для которых можно рассчитать КПД, если рабочим телом является идеальный газ и заданы параметры в точках перехода одного термодинамического процесса в другой.

Изобарно-изохорный

Изохорно-адиабатный

Изобарно-адиабатный

Изобарно-изохорно-изотермический

Изобарно-изохорно-линейный

Цикл Карно. КПД идеального теплового двигателя

Наибольшим КПД при заданных температурах нагревателя Tнагр и холодильника Tхол обладает тепловой двигатель, где рабочее тело расширяется и сжимается по циклу Карно (рис. 2), график которого состоит из двух изотерм (2–3 и 4–1) и двух адиабат (3–4 и 1–2).

Теорема Карно доказывает, что КПД такого двигателя не зависит от используемого рабочего тела, поэтому его можно вычислить, используя соотношения термодинамики для идеального газа:

Экологические последствия работы тепловых двигателей

Интенсивное использование тепловых машин на транспорте и в энергетике (тепловые и атомные электростанции) ощутимо влияет на биосферу Земли. Хотя о механизмах влияния жизнедеятельности человека на климат Земли идут научные споры, многие ученые отмечают факторы, благодаря которым может происходить такое влияние:

  1. Парниковый эффект – повышение концентрации углекислого газа (продукт сгорания в нагревателях тепловых машин) в атмосфере. Углекислый газ пропускает видимое и ультрафиолетовое излучение Солнца, но поглощает инфракрасное излучение, идущее в космос от Земли. Это приводит к повышению температуры нижних слоев атмосферы, усилению ураганных ветров и глобальному таянию льдов.
  2. Прямое влияние ядовитых выхлопных газов на живую природу (канцерогены, смог, кислотные дожди от побочных продуктов сгорания).
  3. Разрушение озонового слоя при полетах самолетов и запусках ракет. Озон верхних слоев атмосферы защищает все живое на Земле от избыточного ультрафиолетового излучения Солнца.
Читать еще:  Что будет в будущем с бензиновыми двигателями

Выход из создающегося экологического кризиса лежит в повышении КПД тепловых двигателей (КПД современных тепловых машин редко превышает 30%); использовании исправных двигателей и нейтрализаторов вредных выхлопных газов; использовании альтернативных источников энергии (солнечные батареи и обогреватели) и альтернативных средств транспорта (велосипеды и др.).

Холодильные машины

Житейский опыт и физические эксперименты говорят нам о том, что в процессе теплообмена теплота передаётся от более нагретого тела к менее нагретому, но не наоборот. Никогда не наблюдаются процессы, в которых за счёт теплообмена энергия самопроизвольно переходит от холодного тела к горячему, в результате чего холодное тело ещё больше остывало бы, а горячее тело — ещё больше нагревалось.

Рис. 3. Холодильная машина

Ключевое слово здесь — «самопроизвольно». Если использовать внешний источник энергии, то осуществить процесс передачи тепла от холодного тела к горячему оказывается вполне возможным. Это и делают холодильные
машины.

По сравнению с тепловым двигателем процессы в холодильной машине имеют противоположное направление (рис. 3 ).

Рабочее тело холодильной машины называют также хладагентом. Мы для простоты будем считать его газом, который поглощает теплоту при расширении и отдаёт при сжатии (в реальных холодильных установках хладагент — это летучий раствор с низкой температурой кипения, который забирает теплоту в процессе испарения и отдаёт при конденсации).

Холодильник в холодильной машине — это тело, от которого отводится теплота. Холодильник передаёт рабочему телу (газу) количество теплоты , в результате чего газ расширяется.

В ходе сжатия газ отдаёт теплоту более нагретому телу — нагревателю. Чтобы такая теплопередача осуществлялась, надо сжимать газ при более высоких температурах, чем были при расширении. Это возможно лишь за счёт работы , совершаемой внешним источником (например, электродвигателем (в реальных холодильных агрегатах электродвигатель создаёт в испарителе низкое давление, в результате чего хладагент вскипает и забирает тепло; наоборот, в конденсаторе электродвигатель создаёт высокое давление, под которым хладагент конденсируется и отдаёт тепло)). Поэтому количество теплоты, передаваемое нагревателю, оказывается больше количества теплоты, забираемого от холодильника, как раз на величину :

Таким образом, на -диаграмме рабочий цикл холодильной машины идёт против часовой стрелки. Площадь цикла — это работа , совершаемая внешним источником (рис. 4 ).

Рис. 4. Цикл холодильной машины

Основное назначение холодильной машины — охлаждение некоторого резервуара (например, морозильной камеры). В таком случае данный резервуар играет роль холодильника, а нагревателем служит окружающая среда — в неё рассеивается отводимое от резервуара тепло.

Показателем эффективности работы холодильной машины является холодильный коэффициент, равный отношению отведённого от холодильника тепла к работе внешнего источника:

Холодильный коэффициент может быть и больше единицы. В реальных холодильниках он принимает значения приблизительно от 1 до 3.

Имеется ещё одно интересное применение: холодильная машина может работать как тепловой насос. Тогда её назначение — нагревание некоторого резервуара (например, обогрев помещения) за счёт тепла, отводимого от окружающей среды. В данном случае этот резервуар будет нагревателем, а окружающая среда — холодильником.

Показателем эффективности работы теплового насоса служит отопительный коэффициент, равный отношению количества теплоты, переданного обогреваемому резервуару, к работе внешнего источника:

Значения отопительного коэффициента реальных тепловых насосов находятся обычно в диапазоне от 3 до 5.

Анализ теплового цикла

Тепловой цикл включает в себя четыре термодинамических базовых процесса. Вначале происходит преобразование состояния рабочего тела, а затем, возвращение его в исходное состояние: сжатие, получение тепла, расширение и отвод тепла.

Каждый из этих процессов осуществляется по следующей схеме, которая определяет условия реализации цикла:

  • Изотермический — работа выполняется при постоянной температуре.
  • Изобарический — рабочий цикл реализуется при постоянном давлении.
  • Изометрический — тепловой процесс протекает при постоянном объеме
  • Адиабатический — цикл осуществляется при постоянной энтропии.

    Для того чтобы процесс был максимально приближен к обратимому, есть два способа перемещения поршня: изотермический — это означает, что тепло постепенно поступает или выходит из резервуара при температуре, бесконечно отличающейся от температуры газа в поршне, и адиабатический, при котором теплообмен вообще не происходит, газ действует, как пружина.

    Таким образом, когда подводится тепло и газ расширяется, температура газа должна оставаться такой же, как и у источника тепла, при этом газ расширяется изотермически. Точно так же позже он будет сжиматься в цикле изотермически, с выделением тепла.

    Чтобы выяснить эффективность, нужно проследить за полным циклом двигателя, выяснить, сколько он работает, сколько тепла забирается из топлива и сколько энергии теряется при подготовке к следующему циклу.

    Характеристики теплового цикла, связанного с тепловым двигателем, обычно описываются с помощью двух диаграмм изменения состояния: диаграммы PV, показывающей соотношение давление-объем, и диаграммы TS, демонстрирующей пару температура-энтропия.

    Для постоянной массы газа работа теплового двигателя представляет собой повторяющийся цикл, и его PV-диаграмма будет выглядеть замкнутой фигурой.

    В тепловых двигателях стремятся достигнуть наиболее полного превращения тепловой энергии в механическую. Максимальное КПД.

    На рисунке изображены циклы, используемые в бензиновом карбюраторном двигателе и в дизельном двигателе. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30%, у дизельного двигателя – порядка 40 %.

    Читать еще:  Автомобиль двигаясь с выключенным двигателем какое расстояние

    Французский физик С.Карно разработал работу идеального теплового двигателя. Рабочую часть двигателя Карно можно представить себе в виде поршня в заполненном газом цилиндре. Поскольку двигатель Карно — машина чисто теоретическая, то есть идеальная, силы трения между поршнем и цилиндром и тепловые потери считаются равными нулю. Механическая работа максимальна, если рабочее тело выполняет цикл, состоящий из двух изотерм и двух адиабат. Этот цикл называют циклом Карно.

    участок 1-2: газ получает от нагревателя количество теплоты Q1 и изотермически расширяется при температуре T1
    участок 2-3: газ адиабатически расширяется, температура снижается до температуры холодильника T2
    участок 3-4: газ экзотермически сжимается, при этом он отдает холодильнику количество теплоты Q2
    участок 4-1: газ сжимается адиабатически до тех пор, пока его температура не повысится до T1.
    Работа, которую выполняет рабочее тело — площадь полученной фигуры 1234.

    Функционирует такой двигатель следующим образом:

    1. Сначала цилиндр вступает в контакт с горячим резервуаром, и идеальный газ расширяется при постоянной температуре. На этой фазе газ получает от горячего резервуара некое количество тепла.
    2. Затем цилиндр окружается идеальной теплоизоляцией, за счет чего количество тепла, имеющееся у газа, сохраняется, и газ продолжает расширяться, пока его температура не упадет до температуры холодного теплового резервуара.
    3. На третьей фазе теплоизоляция снимается, и газ в цилиндре, будучи в контакте с холодным резервуаром, сжимается, отдавая при этом часть тепла холодному резервуару.
    4. Когда сжатие достигает определенной точки, цилиндр снова окружается теплоизоляцией, и газ сжимается за счет поднятия поршня до тех пор, пока его температура не сравняется с температурой горячего резервуара. После этого теплоизоляция удаляется и цикл повторяется вновь с первой фазы.

    КПД цикла Карно не зависит от вида рабочего тела

    для холодильной машины

    В реальных тепловых двигателях нельзя создать условия, при которых их рабочий цикл был бы циклом Карно. Так как процессы в них происходят быстрее, чем это необходимо для изотермического процесса, и в то же время не настолько быстрые, чтоб быть адиабатическими.

    § 5.11. Тепловые двигатели

    Большая часть двигателей на Земле — это тепловые двигатели, т. е. устройства, превращающие внутреннюю энергию топлива в механическую энергию.

    Необратимость процессов в природе налагает определенные ограничения на возможность использования внутренней энергии для совершения работы тепловыми двигателями. Это прямо отражено во втором законе термодинамики в формулировке Кельвина (см. § 5.9).

    Простейшая модель тепловой машины

    Простейшую тепловую машину можно собрать из стакана с водой, капли анилина и горелки (рис. 5.14). Так как сосуд с водой подогревается снизу, то температура воды Т2 в верхних слоях, естественно, ниже, чем температура Т1 внизу.

    Плотность анилина и плотность воды по-разному зависят от температуры. При Т1 плотность анилина меньше плотности воды, а при Т2 больше. Если влить холодный анилин в воду, то он опустится на дно. После нагревания плотность анилина уменьшается и он всплывает. У поверхности вследствие охлаждения плотность анилина станет больше плотности воды, и капля вновь опустится на дно. Затем весь цикл повторится.

    При каждом цикле совершается положительная работа по преодолению трения при движении капли в воде. Если каплю внизу «нагружать», а вверху «разгружать», то такая тепловая машина может быть использована для подъема груза.

    Если покрыть стакан стеклянной пластинкой, то температура верхних слоев воды увеличится и машина перестанет работать.

    В нашей простейшей машине происходят процессы, общие для всех тепловых двигателей. Машина получает от нагревателя (горелки) количество теплоты Q1 и передает холодильнику (в данном случае атмосфере) количество теплоты Q2. За счет того, что Q1 > Q2, и совершается работа.

    Принципы действия тепловых двигателей

    Чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счет повышения температуры рабочего тела на сотни градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

    Рабочим телом у всех тепловых двигателей является газ (см. § 3.11), который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T1. Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру T1 называют температурой нагревателя.

    Роль холодильника

    По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т2. Эта температура не может быть ниже температуры окружающей среды, так как в противном случае давление газа станет меньше атмосферного и двигатель не сможет работать. Обычно температура Т2 несколько больше температуры окружающей среды. Ее называют температурой холодильника. Холодильником являются атмосфера или специальные устройства для охлаждения и конденсации отработанного пара — конденсаторы. В последнем случае температура холодильника может быть несколько ниже температуры атмосферы.

    Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть энергии неизбежно передается атмосфере (холодильнику) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин. Эта часть внутренней энергии безвозвратно теряется. Именно об этом и говорит второй закон термодинамики в формулировке Кельвина.

    Принципиальная схема теплового двигателя изображена на рисунке 5.15. Рабочее тело двигателя получает при сгорании топлива количество теплоты Q1, совершает работу А’ и передает холодильнику количество теплоты |Q2| 10 кВт. Когда эта мощность достигнет 3 • 10 12 кВт, то средняя температура атмосферы Земли повысится примерно на 1 °С. Дальнейшее повышение температуры может создать угрозу таяния ледников и катастрофического повышения уровня Мирового океана. Но этим далеко не исчерпываются негативные последствия применения тепловых двигателей. Растет выброс в атмосферу микроскопических частиц — сажи, пепла, измельченного топлива. Они изменяют оптические свойства атмосферы, соотношение между поглощенной и отраженной солнечной энергией, увеличивают «парниковый эффект», обусловленный повышением концентрации углекислого газа в течение длительного промежутка времени. Углекислый газ задерживает тепловое излучение Земли, что приводит к повышению температуры атмосферы.

    Читать еще:  Грузовик своими руками с двигателем от мотоблока

    Выбрасываемые в атмосферу токсические продукты горения: оксиды серы, азота, металлов, угарный газ (СО), канцерогенные вещества — продукты неполного сгорания органических топлив — оказывают вредное воздействие на флору и фауну. Особую опасность в этом отношении представляют автомобили, число которых угрожающе растет, а очистка отработанных газов затруднена.

    Все это ставит ряд серьезных проблем перед обществом. Наряду с важнейшей задачей повышения КПД тепловых двигателей требуется проводить ряд мероприятий по охране окружающей среды. Необходимо повышать эффективность сооружений, препятствующих выбросу в атмосферу вредных веществ; добиваться более полного сгорания топлива в автомобильных двигателях. Уже сейчас не допускаются к эксплуатации автомобили с повышенным содержанием СО в отработанных газах. Осуществляется перевод автомобильных двигателей на сжиженный газ в качестве топлива. Обсуждается возможность применения в качестве топлива водорода, в результате сгорания которого образуется вода.

    Другое направление прилагаемых усилий — это увеличение эффективности использования энергии, экономия ее на производстве и в быту. Нельзя оставлять невыключенными электроприборы, допускать бесполезные потери топлива при обогревании помещений. Примером нерационального использования энергии служат попытки введения в эксплуатацию гражданских сверхзвуковых самолетов, потребляющих в 8 раз больше топлива, чем обычные.

    Решение перечисленных проблем жизненно важно для человека. Организация охраны окружающей среды требует усилий в масштабе земного шара.

    Большую часть механической и электрической энергии вырабатывают тепловые двигатели. Пока равноценной замены им нет. В то же время тепловые двигатели оказывают отрицательное влияние на окружающую среду и условия существования человека на Земле.

    Тепловые двигатели. КПД тепловых двигателей. 10-й класс

    Разделы: Физика

    Класс: 10

    Тип урока: Урок изучения нового материала.

    Цель урока: Разъяснить принцип действия теплового двигателя.

    Образовательные: познакомить учащихся с видами тепловых двигателей, развивать умение определять КПД тепловых двигателей, раскрыть роль и значение ТД в современной цивилизации; обобщить и расширить знания учащихся по экологическим проблемам.

    Развивающие: развивать внимание и речь, совершенствовать навыки работы с презентацией.

    Воспитательные: воспитывать у учащихся чувство ответственности перед последующими поколениями, в связи с чем, рассмотреть вопрос о влиянии тепловых двигателей на окружающую среду.

    Оборудование: компьютеры для учащихся, компьютер учителя, мультимедийный проектор, тесты (в Excel), Физика 7-11 Библиотека электронных наглядных пособий. “Кирилл и Мефодий”.

    Ход урока

    1. Оргмомент

    2. Организация внимания учащихся

    Тема нашего урока: “Тепловые двигатели”. (Слайд 1)

    Сегодня мы вспомним виды тепловых двигателей, рассмотрим условия их эффективной работы, поговорим о проблемах связанных с их массовым применением. (Слайд 2)

    3. Актуализация опорных знаний

    Прежде чем перейти к изучению нового материала предлагаю проверить как вы к этому готовы.

    – Дайте формулировку первого закона термодинамики. (Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количество теплоты, переданное системе. U=A+Q)

    – Может ли газ нагреться или охладиться без теплообмена с окружающей средой? Как это происходит? (При адиабатических процессах.) (Слайд 3)

    – Напишите первый закон термодинамики в следующих случаях: а) теплообмен между телами в калориметре; б) нагрев воды на спиртовке; в) нагрев тела при ударе. (а) А=0, Q=0, U=0; б) А=0, U= Q; в) Q=0, U=А)

    – На рисунке изображен цикл, совершаемый идеальным газом определенной массы. Изобразить этот цикл на графиках р(Т) и Т(р). На каких участках цикла газ выделяет теплоту и на каких – поглощает?

    (На участках 3-4 и 2-3 газ выделяет некоторое количество теплоты, а на участках 1-2 и 4-1 теплота поглощается газом.) (Слайд 4)

    4. Изучение нового материала

    Все физические явления и законы находят применение в повседневной жизни человека. Запасы внутренней энергии в океанах и земной коре можно считать практически неограниченными. Но располагать этими запасами недостаточно. Необходимо за счет энергии уметь приводить в действие устройства, способные совершать работу. (Слайд 5)

    Что является источником энергии? (различные виды топлива, энергия ветра, солнца, приливов и отливов)

    Существуют различные типы машин, которые реализуют в своей работе превращение одного вида энергии в другой.

    Тепловой двигатель – устройство, превращающее внутреннею энергию топлива в механическую энергию. (Слайд 6)

    Рассмотрим устройство и принцип работы теплового двигателя. Тепловая машина работает циклично.

    Любая тепловая машина состоит из нагревателя, рабочего тела и холодильника. (Слайд 7)

    КПД замкнутого цикла (Слайд 8)

    Q1 – количество теплоты полученное от нагревания Q1>Q2

    Теория и практика

    Как отразились работы теоретиков на качестве паровых двигателей? Начался быстрый процесс совершенствования этой техники. В семидесятые годы девятнадцатого века паровозы отчаянно дымили и имели КПД = 3%, а в 1910 году паровозы дымили не меньше, но имели КПД = 7-9%. Это большой прогресс, но подняться выше при разработке паровых машин не удалось.

    На смену паровозам пришли двигатели внутреннего сгорания: их КПД сразу же превысил паровые двигатели, составил 25%. Современные дизельные двигатели, с электронной системой управления, имеют КПД=40%.

    Является ли это пределом? Для двигателей внутреннего сгорания, пожалуй, является. Но есть более производительные тепловые машины: это турбины. Нагретый газ, непрерывной струей вырываясь из сопла, вращает турбину; это не цикличный, а постоянный процесс, и при его реализации без особого труда достигается КПД=60%. Недаром сейчас активно разрабатываются турбодвигатели.

  • Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector