Avtonova37.ru

Авто мастер
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Виды и классификация механических характеристик электрических двигателей

Классификация асинхронных электродвигателей

Если рассматривать конструктивное исполнение электродвигателей поверхностно и кратко, то можно выделить 5 основных групп:

– электродвигатели на лапах;

– электродвигатели с фланцем;

– электродвигатели с малым фланцем;

– электродвигатели, комбинированные с малым фланцем.

Конструктивное исполнение

– это расположение составных частей машины относительно элементов крепления (подшипников и конца вала).

Способ монтажа

– это пространственное положение машины на месте установки.

– это часть вала, выступающая за внешний подшипник (или внешние подшипники). Относится к самой машине и к комплекту, состоящему из машины и дополнительных подшипников.

В соответствии с ГОСТ 2479-79 условное обозначение конструктивного исполнения и способа монтажа электродвигателей состоит из латинских букв IM и четырех цифр и выглядит следующим образом:

Первая цифра

– условное обозначение конструктивных исполнений электрических машин:

1- машины на лапах с подшипниковыми щитами; с пристроенным редуктором;

2- машины на лапах с подшипниковыми щитами, с фланцем на подшипниковом щите (или щитах);

3- машины без лап с подшипниковыми щитами, с фланцем на одном подшипниковом щите (или щитах); с цокольным фланцем;

4- машины без лап с подшипниковыми щитами, с фланцем на станине;

5- машины без подшипниковых щитов;

6- машины на лапах с подшипниковыми щитами и со стояковыми подшипниками;

7- машины на лапах со стояковыми подшипниками (без подшипниковых щитов);

8- машины с вертикальным валом, кроме машин групп от IM 1 до IM 4;

9- машины специального исполнения по способу монтажа.

Вторая и третья цифры

— способ монтаж электродвигателя. Основные способы монтажа приведены в таблице ниже. Тут же в скобках указано монтажное исполнение импортных, европейских электродвигателях, произведенных по стандартам DIN (CENELEK).

Четвертая цифра

– условное обозначение исполнения концов вала двигателя:

1 — с одним цилиндрическим концом вала;

2 — с двумя цилиндрическими концами вала;

3 — с одним коническим концом вала;

4 — с двумя коническими концами вала;

5 — с одним фланцевым концом вала;

6 — с двумя фланцевыми концами вала;

7 — с фланцевым концом вала на стороне D и цилиндрическим концом вала на стороне N;

9 — прочие исполнения концов вала.

Пример обозначения монтажного исполнения электродвигателя:

– машина на лапах с двумя подшипниковыми щитами, с одним цилиндрическим концом вала, может работать при любом направлении конца вала.

Модели смешанного возбуждения

Для смешанного возбуждения свойственно расположение между параметрами устройств параллельного и последовательного возбуждения, чем легко обеспечивается значительность пускового момента и полностью исключается любая возможность «разноса» движкового механизма в условиях холостого хода.

В условиях смешанного типа возбуждения:

Двигатель смешанного возбуждения

Регулировка частоты моторного вращения при наличии возбуждения смешанного типа осуществляется по аналогии с двигателями, имеющими параллельное возбуждение, а варьирование МДС-обмоток способствует получению практически любой промежуточной механической характеристики.

Что собой представляет коллекторный электродвигатель

Длина электродвигателя постоянного тока зависит от класса. Например, если речь идет о двигателе 400 класса, то его длина составит 40 мм. Отличием коллекторных электродвигателей от бесколлектрных собратьев является простота в изготовлении и эксплуатации, следовательно, и стоимость его будет более низкой. Их особенность — наличие щеточно-коллекторного узла, при помощи которого осуществляется соединение цепи ротора с расположенными в неподвижной части мотора цепями. Состоит он из расположенных на роторе контактов – коллектора и прижатых к нему щеток, расположенных вне ротора.

Используют эти электродвигатели в радиоуправляемых игрушках: подав на контакты такого двигателя напряжение от источника постоянного тока (той же батарейки), вал приводится в движение. А, чтобы изменить его направление вращения, достаточно изменить полярность, подаваемого напряжения питания. Небольшой вес и размеры, низкая цена и возможность восстановления щеточно-коллекторного механизма делают эти электродвигатели наиболее используемыми в бюджетных моделях, несмотря на то, что он значительно уступает по надежности бесколлекторному, поскольку не исключено искрение, т.е. чрезмерный нагрев подвижных контактов и их быстрый износ при попадании пыли, грязи или влаги.

На коллекторный электродвигатель нанесена, как правило, маркировка, указывающая на число оборотов: чем оно меньше, тем скорость вращения вала больше. Она, к слову, очень плавно регулируется. Но, существуют и двигатели этого типа высокооборотистые, не уступающие бесколлекторным.

Преимущества и недостатки асинхронных двигателей

Асинхронные электродвигатели могут обладать фазным и короткозамкнутым ротором.

Короткозамкнутый ротор более распространен.

Такие двигатели обладают следующими преимуществами:

  • относительно одинаковая скорость вращения при разных уровнях нагрузки;
  • не боятся непродолжительных механических перегрузок;
  • простая конструкция;
  • несложная автоматизация и пуск;
  • высокий КПД (коэффициент полезного действия).

Электродвигатели с короткозамкнутым контуром требуют большой пусковой ток.

Если невозможно реализовать выполнение этого условия, то используют устройства с фазным ротором. Они обладают такими достоинствами:

  • хороший начальный вращающий момент;
  • нечувствительны к кратковременным перегрузкам механической природы;
  • постоянная скорость работы при наличии нагрузок;
  • малый пусковой ток;
  • с такими двигателями применяют автоматические пусковые устройства;
  • могут в небольших пределах изменять скорость вращения.

К основным недостаткам асинхронных двигателей относят то, что изменять их скорость работы можно только посредством изменения частоты электрического тока.

Кроме того, частота вращения – относительна. Она колеблется в небольших пределах. Иногда это недопустимо.

Интересное видео об асинхронных электродвигателях смотрите ниже:

Виды и классификация механических характеристик электрических двигателей

Электрический привод (сокращённо — электропривод) — это электромеханическая система для приведения в движение исполнительных механизмов рабочих машин и управления этим движением в целях осуществления технологического процесса.

Читать еще:  Гольф 3 плавают обороты двигателя на холостом ходу

Современный электропривод — это совокупность множества электромашин, аппаратов и систем управления ими. Он является основным потребителем электрической энергии (до 60 %) и главным источником механической энергии в промышленности.

Определение по ГОСТу Р 50369-92 [1] Электропривод — электромеханическая система, состоящая из преобразователей электроэнергии, электромеханических и механических преобразователей, управляющих и информационных устройств и устройств сопряжения с внешними электрическими, механическими, управляющими и информационными системами, предназначенная для приведения в движение исполнительных органов рабочей машины и управления этим движением в целях осуществления технологического процесса.

Как видно из определения, исполнительный орган в состав привода не входит. Однако, авторы авторитетных учебников [2] [3] включают исполнительный орган в состав электропривода. Это противоречие объясняется тем, что при проектировании электропривода необходимо учитывать величину и характер изменения механической нагрузки на валу электродвигателя, которые определяются параметрами исполнительного органа. При невозможности реализации прямого привода электродвигатель приводит исполнительный органа в движение через кинематическую передачу. КПД, передаточное число и пульсации, вносимые кинематической передачей также учитываются при проектировании электропривода.

Функциональная схема

  • Регуляторы (Р) предназначен для управления процессами, протекающими в электроприводе.
  • Электрический преобразователь (ЭП) предназначен для преобразования электрической энергии сети в регулируемое напряжение постоянного или переменного тока.
  • Электромеханический преобразователь (ЭМП) — двигатель, предназначен для преобразования электрической энергии в механическую.
  • Механический преобразователь (МП) может изменять скорость вращения двигателя, а ткаже характер движения (с вращательного на вращательное или с вращательного на поступательное).
  • Упр — управляющие воздействие.
  • ИО — исполнительный орган.

Функциональные части:

  • Силовая часть или электропривод с разомкнутой системой регулирования;
  • Механическая часть;
  • Система управления электропривода.

Характеристики привода

Статические характеристики

Под статическими характеристиками чаще всего подразумеваются электромеханическая и механическая характеристика.

Механическая характеристика

Механическая характеристика — это зависимость угловой скорости вращения вала к от электромагнитного момента M (или от момента сопротивления Mc). Механические характеристики являются очень удобным и полезным инструментом при анализе статических и динамических режимов электропривода.[4]

Электромеханическая характеристика двигателя

Электромеханическая характеристика — это зависимость угловой скорости вращения вала W от тока I.

Виды электроприводов

  • Нерегулируемые, простейшие, предназначенные для пуска и остановки двигателя, работающие в односкоростном режиме.
  • Регулируемые, допускающие изменение частоты вращения и управление пуском и торможением электродвигателя для заданного технологического процесса. Способ регулирования зависит от типа двигателя. Так, для машин переменного тока применимо управление частотой, током в роторе, переключением пар полюсов статора. Для коллекторных машин применимо регулирование напряжением.
  • Неавтоматизированные
  • Автоматизированные
  • Линейные — для частных случаев.
  • Вращательные — наиболее распространённый тип. Чаще всего линейное перемещение получают механическими преобразователями вращательного движения двигателя.

Подбор электродвигателя

Качество работы современного электропривода во многом определяется правильным выбором используемого электрического двигателя, что в свою очередь обеспечивает продолжительную надёжную работу электропривода и высокую эффективность технологических и производственных процессов в промышленности, на транспорте, в строительстве и других областях.

При выборе электрического двигателя для привода производственного механизма руководствуются следующими рекомендациями:

  • Исходя из технологических требований, производят выбор электрического двигателя по его техническим характеристикам (по роду тока, номинальным напряжению и мощности, частоте вращения, виду ме ханической характеристики, продолжительности включения, перегрузочной способности, пусковым, регулировочным и тормозным свойствами др.), а также конструктивное исполнение двигателя по способу монтажа и крепления.
  • Исходя из экономических соображений, выбирают наиболее простой, экономичный и надёжный в эксплуатации двигатель, не требующий высоких эксплуатационных расходов и имею щий наименьшие габариты, массу и стоимость.
  • Исходя из условий окружающей среды, в которых будет работать двигатель, а также из требований безопасности работы во взрывоопасной среде, выбирают конструктивное исполнение двигателя по способу защиты.

Правильный выбор типа, исполнения и мощности электрического двигателя определяет не только безопасность, надёжность и экономичность работы и длительность срока службы двигателя, но и технико-экономические показатели всего электропривода в целом.

Алгоритм выбора электропривода

Принцип действия исполнительных механизмов не является ключевым фактором выбора электропривода, ключевыми в данном случае являются характеристики технологического процесса, которые должен обеспечить механизм. Этому же условию должен соответствовать и электропривод.

Например алгоритм выбора технических специалистов, обслуживающих технологические процессы, в которых исполнительным механизмом является трубопроводная арматура, будет следующим:

  • Выполняемая функция: запорная, дросселирующее регулирование, запорно-регулирующий режим, отсечка и т. д.
  • Пропускная способность.
  • Транспортируемая среда: абразивная, агрессивная химически, вязкая пульпа, огнеопасный газ, пар и т. д.
  • Время срабатывания арматуры (в зависимости от типа).
  • Высокая ремонтопригодность и длительный срок службы.

Следует иметь в виду, что не может быть универсального электропривода. В качестве примера, приведём средний медеплавильный цех: цех имеет несколько анодных печей, печи работают в разных режимах: загрузка, плавление, восстановление, окисление и это неполный перечень. Требуемые характеристики механизмов для этих режимов различны, на каждом процессе бывает задействована различная группа приводной арматуры. Диаметры разнятся от 200 до 900 мм, различны и подающиеся среды — мазут, газ, воздух и проч., температурные режимы так же изменяются.

С другой стороны, конструкция электропривода может быть модульной, части привода могут свободно меняться, причём блоки разных исполнений должны быть по возможности унифицированы и легко заменяться.

Читать еще:  В машине пахнет бензином при запуске двигателя

Для некоторых механизмов, работающих в повторно-кратковременном режиме (краны, лифты), большую часть рабочего цикла двигатель работает на естественной характеристике и только относительно небольшое время работает на регулировочной характеристике, обычно на пониженной частоте вращения. В этом случае потери электроэнергии на регулировочной характеристике сравнительно невелики, так как мало время работы на ней. Поэтому здесь можно применять простые и дешёвые способы регулирования, даже если они вызывают повышенные потери мощности в обмотках.

Основными типами электродвигателей, которые используются для привода производственных механизмов с регулируемой скоростью движения рабочего органа, являются двигатели постоянного тока и асинхронные с короткозамкнутым или фазным ротором. Наиболее просто требуемые искусственные характеристики получаются у двигателей постоянного тока, поэтому до недавнего времени они преимущественно и находили применение для регулируемых электроприводов. С другой стороны, асинхронные двигатели, уступая двигателям постоянного тока по возможностям регулирования частоты вращения, по сравнению с последними проще в изготовлении и эксплуатации и имеют относительно меньшие массу, размеры и стоимость. Именно эти отличительные свойства асинхронных двигателей определили их главенствующее использование в промышленном нерегулируемом электроприводе. [5] В настоящее время двигатели постоянного тока вытесняются асинхронными двигателями с преобразователями частоты, основными производителями которых являются ABB, Schneider, Siemens, Lenze. Число выпускаемых двигателей постоянного тока составляет лишь 4-5 % числа двигателей переменного тока.

Современные российские производители и поставщики электроприводов

Проблема регулирования скорости движения машин и механизмов с целью экономии электроэнергии решалась в последние десятилетия в основном с помощью регулируемых электроприводов. Причём, если ещё в 70-80-х годах преобладающими были регулируемые электроприводы постоянного тока, то в настоящее время они повсеместно вытесняются регулируемыми электроприводами переменного тока, как правило, с асинхронными электродвигателями с короткозамкнутым ротором. Объясняется это достижениями микроэлектроники, позволяющими реализовать небольшими аппаратными затратами довольно сложные алгоритмы управления электродвигателем переменного тока, который в общем случае предпочтительнее двигателя постоянного тока по надёжности, массе, габаритам и стоимости.

Некоторые из производителей в России и СНГ:

  • ОАО «Электропривод» (г.Киров)
  • ООО «Электропривод» (Украина, Запорожье),
  • ОАО Завод «Преобразователь» (Украина, Запорожье),
  • ОАО «Запорожский электроаппаратный завод»,
  • НИПТИЭМ,
  • ОАО «Владимир»,
  • ООО «АВВИ»,
  • ООО «Двигатель»,
  • ЗАО Томск,
  • ООО «Кранприборсервис» на базе СКТБ Башенного Краностроения (СКТББК г. Москва),
  • ООО НПФ «Ирбис» (г. Новосибирск),
  • ООО «ЧЭАЗ — ЭЛПРИ» (дочернее предприятие ОАО «Чебоксарский электроаппаратный завод»),
  • НТЦ «Приводная техника» (г. Челябинск),
  • ЗАО «ЭРАСИБ» (г. Новосибирск)
  • НПП «Уралэлектра» (г. Екатеринбург).

Детали машин

Общие понятия и определения

Передачей, в общем случае, называется устройство, предназначенное для передачи энергии из одной точки пространства в другую, расположенную на некотором расстоянии от первой.

В зависимости от вида передаваемой энергии передачи делятся на механические, электрические, гидравлические, пневматические и т.п.
Курс «Детали машин» изучает механические передачи, предназначенные для передачи механической энергии.

Механической передачей называют устройство (механизм, агрегат) , предназначенное для передачи энергии механического движения, как правило, с преобразованием его кинематических и силовых параметров, а иногда и самого вида движения (вращательного в поступательное или сложное и т. п.) .
Наибольшее распространение в технике получили передачи вращательного движения, которым в курсе деталей машин уделено основное внимание (далее под термином передача подразумевается, если это не оговорено особо, именно передача вращательного движения) .

В общем случае в любой машине можно выделить три составные части: двигатель, передачу и исполнительный элемент.
Механическая энергия, приводящая в движение машину или отдельный ее механизм, представляет собой энергию вращательного движения вала двигателя, которая передается к исполнительному элементу посредством механической передачи или передаточного устройства. Передачу механической энергии от двигателя к исполнительному элементу машины осуществляют с помощью различных передаточных механизмов (в дальнейшем – передач) : зубчатых, червячных, ременных, цепных, фрикционных и т. п.

Функции механических передач

Передавая механическую энергию от двигателя к исполнительному элементу (элементам) , передачи одновременно могут выполнять одну или несколько из следующих функций.

Понижение (или повышение) частоты вращения от вала двигателя к валу исполнительного элемента.
Понижение частоты вращения называют редуцированием , а закрытые передачи, понижающие частоты вращения, — редукторами .
Устройства, повышающие частоты вращения, называют ускорителями или мультипликаторами .
В технике и машиностроении наибольшее применение получили понижающие передачи , поэтому в курсе Детали машин им уделяется преимущественное внимание. Впрочем, принципиальная разница в расчетах редуцирующих передач и ускорителей невелика.

Изменение направления потока мощности.
Примером может служить зубчатая передача (редуктор) заднего моста автомобиля. Ось вращения вала двигателя у большинства автомобилей составляет с осью вращения колес прямой угол. Для изменения направления потока мощности в данном случае применяют коническую зубчатую передачу.

Регулирование частоты вращения ведомого вала.
С изменением частоты вращения изменяется и вращающий момент: меньшей частоте соответствует больший момент. Для регулирования частоты вращения ведомого вала применяют коробки передач и вариаторы.
Коробки передач обеспечивают ступенчатое изменение частоты вращения ведомого вала в зависимости от числа ступеней и включенной ступени.
Вариаторы обеспечивают бесступенчатое в некотором диапазоне изменение частоты вращения ведомого вала.

Преобразование одного вида движения в другой (вращательного в поступательное, равномерного в прерывистое и т. д.).

Реверсирование движения — изменение направления вращения выходного вала машины в ту или иную сторону в зависимости от функциональной необходимости.

Читать еще:  Что происходит с кольцами при перегреве двигателя

Распределение энергии двигателя между несколькими исполнительными элементами машины.
Так, любой сельскохозяйственный комбайн вмещает несколько механизмов, выполняющих самостоятельные технологические операции по уборке урожая, при этом каждый из этих механизмов приводит в движение собственный исполнительный элемент (ходовую часть, жатку, молотилку, очистку и т. п.) . Поскольку комбайн, как правило, оснащен одной силовой установкой (двигателем) , при помощи передач его энергия распределяется между каждым из обособленных механизмов.

Классификация механических передач

В зависимости от принципа действия механические передачи разделяют на две основные группы:

  • передачи зацеплением (зубчатые, червячные, цепные) ;
  • передачи трением (фрикционные, ременные) .

Каждая из указанных групп передач подразделяется на две подгруппы:

  • передачи с непосредственным контактом передающих звеньев;
  • передачи с гибкой связью (цепь, ремень) между передающими звеньями.

Кроме этих основных классификационных признаков передачи подразделяют по некоторым другим конструктивным характеристикам: расположению валов, характеру изменения вращающего момента и угловой скорости, по количеству ступеней и т. д.

Классификация механических передач по различным признакам представлена ниже.

1. По способу передачи движения от входного вала к выходному:
1.1. Передачи зацеплением:
1.1.1. с непосредственным контактом тел вращения — зубчатые, червячные, винтовые;
1.1.2. с гибкой связью — цепные, зубчато-ременные.
1.2. Фрикционные передачи:
1.2.1. с непосредственным контактом тел вращения – фрикционные;
1.2.2. с гибкой связью — ременные.

2. По взаимному расположению валов в пространстве :
2.1. с параллельными осями валов — зубчатые с цилиндрическими колесами, фрикционные с цилиндрическими роликами, цепные;
2.2. с пересекающимися осями валов — зубчатые и фрикционные конические, фрикционные лобовые;
2.3. с перекрещивающимися осями — зубчатые — винтовые и гипоидные, червячные, лобовые фрикционные со смещением ролика.

3. По характеру изменения угловой скорости выходного вала по отношению к входному: редуцирующие (понижающие) и мультиплицирующие (повышающие) .

4. По характеру изменения передаточного отношения (числа) : передачи с постоянным (неизменным) передаточным отношением и передачи с переменным (изменяемым или по величине, или по направлению или и то и другое вместе) передаточным отношением.

5. По подвижности осей и валов : передачи с неподвижными осями валов — рядовые (коробки скоростей, редукторы) , передачи с подвижными осями валов (планетарные передачи, вариаторы с поворотными роликами) .

6. По количеству ступеней преобразования движения: одно-, двух-, трех- и многоступенчатые.

7. По конструктивному оформлению : закрытые и открытые (безкорпусные) .

Наибольшее распространение в технике получили следующие виды механических передач:

  • Зубчатые (цилиндрические, конические, гипоидные, волновые, планетарные и т. п.) ;
  • Ременные (плоскоременные, клиноременные, круглоременные и т. п.) ;
  • Червячные;
  • Фрикционные (постоянной передачи, реверсы и вариаторы) ;
  • Винтовые передачи.

Зубчато-ременные передачи можно выделить в отдельную группу передач с промежуточной гибкой связью, поскольку они способны передавать мощность и посредством трения, и посредством зацепления.

Основные характеристики механических передач

Главными характеристиками передачи, необходимыми для ее расчета и проектирования, являются передаваемые мощности (по величине и направлению) и скорости вращения валов – входных (ведущих) , промежуточных, выходных (ведомых) .
В технических расчетах вместо угловых скоростей обычно используются частоты вращения валов — nвх и nвых , измеряемые в оборотах за минуту. Соотношение между угловой скоростью ω (рад/сек) и частотой вращения n (об/мин) :

Еще важный параметр механической передачи – коэффициент полезного действия (КПД) , характеризующий потери мощности при передаче от двигателя к исполнительному элементу.

Алгоритм выбора электропривода

Для некоторых механизмов, работающих в повторно-кратковременном режиме (краны, лифты), большую часть рабочего цикла двигатель работает на естественной характеристике и только относительно небольшое время работает на искусственной характеристике, обычно на пониженной частоте вращения. В этом случае потери электроэнергии на искусственной характеристике сравнительно невелики, так как мало время работы на ней. Поэтому здесь можно применять простые и дешёвые способы регулирования, даже если они вызывают повышенные потери мощности в обмотках. Поэтому, благодаря простоте реализации метода регулирования скорости путём изменения сопротивления в цепи ротора, такие электроприводы нашли наиболее широкое применение в крановых системах, и сейчас составляют основную часть находящихся в эксплуатации и выпускаемых промышленностью электроприводов. В то же время растет число электроприводов с плавным регулированием скорости, в первую очередь к ним относятся электроприводы по системам «тиристорный преобразователь — двигатель постоянного тока» (ТП-Д) и «преобразователь частоты — асинхронный двигатель» (ПЧ-АД).

Основными типами электродвигателей, которые используются для привода производственных механизмов с регулируемой скоростью движения рабочего органа, являются двигатели постоянного тока и асинхронные с короткозамкнутым или фазным ротором. Наиболее просто требуемые искусственные характеристики получаются у двигателей постоянного тока, поэтому до недавнего времени [когда?] они преимущественно и находили применение для регулируемых электроприводов. С другой стороны, асинхронные двигатели, уступая двигателям постоянного тока по возможностям регулирования частоты вращения, по сравнению с последними проще в изготовлении и эксплуатации и имеют относительно меньшие массу, размеры и стоимость. Именно эти отличительные свойства асинхронных двигателей определили их главенствующее использование в промышленном нерегулируемом электроприводе. В настоящее время двигатели постоянного тока вытесняются короткозамкнутыми асинхронными двигателями с преобразователями частоты, а также синхронными двигателями с постоянными магнитами на роторе и шаговыми. Число выпускаемых двигателей постоянного тока составляет лишь 4-5 % числа двигателей переменного тока и неуклонно снижается [источник не указан 632 дня] .

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector