Avtonova37.ru

Авто мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Влияние изменения напряжения на характеристик асинхронных двигателей

ГОСТ IEC 60034-26-2015 Машины электрические вращающиеся. Часть 26. Влияние несбалансированных напряжений на рабочие характеристики трехфазных асинхронных двигателей

ГОСТ IEC 60034-26-2015

МАШИНЫ ЭЛЕКТРИЧЕСКИЕ ВРАЩАЮЩИЕСЯ

Влияние несбалансированных напряжений на рабочие характеристики трехфазных асинхронных двигателей

Rotating electrical machines. Part 26. Effects of unbalanced voltages on the performance of three-phase cage induction motors

Дата введения 2017-03-01

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

1 ПОДГОТОВЛЕН Федеральным государственным бюджетным образовательным учреждением высшего профессионального образования «Национальный исследовательский университет «МЭИ» (ФГБОУ ВПО «НИУ «МЭИ») и Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении» (ВНИИНМАШ) на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 333 «Вращающиеся электрические машины»

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 29 сентября 2015 г. N 80-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Беларусь

Госстандарт Республики Казахстан

4 Приказом Федерального агентства по техническому регулированию и метрологии от 26 мая 2016 г. N 424-ст межгосударственный стандарт ГОСТ IEC 60034-26-2015 введен в действие в качестве национального стандарта Российской Федерации с 1 марта 2017 г.

5 Настоящий стандарт идентичен международному стандарту IEC 60034-26:2006* «Машины электрические вращающиеся. Часть 26. Влияние несбалансированных напряжений на рабочие характеристики трехфазных асинхронных двигателей» («Rotating electrical machines — Part 26: Effects of unbalanced voltages on the performance of three-phase cage induction motors», IDT).
________________
* Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить, перейдя по ссылке на сайт . — .

Международный стандарт разработан техническим комитетом по стандартизации ТС 2 «Вращающиеся машины» Международной электротехнической комиссии (IEC).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты» (по состоянию на 1 января текущего года), а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

  • Астрономия
  • Биология
  • Биотехнологии
  • География
  • Государство
  • Демография
  • Журналистика и СМИ
  • История
  • Лингвистика
  • Литература
  • Маркетинг
  • Менеджмент
  • Механика
  • Науковедение
  • Образование
  • Охрана труда
  • Педагогика
  • Политика
  • Право
  • Психология
  • Социология
  • Физика
  • Химия
  • Экология
  • Электроника
  • Электротехника
  • Энергетика
  • Юриспруденция
  • Этика и деловое общение

Электротехника Механические характеристики асинхронного двигателя при изменениях напряжения сети и активного сопротивления обмотки ротора

Результаты расчета

S0,0230,10,20,40,7
М 0,0461,00,800,470,28
Ошибка,% по сравнению с расчетом примера 13.2-4,3+5,9-6,8+16,6

Рис. 13.4. Механическая ха­рактеристика

асинхронного двигателя типа 4А160М4УЗ

Применение упрощенной формулы (13.23) наиболее целœесообразно при расчете рабочего участка механической характеристики и при скольжениях s sкрошибка может достигать 15—17%. Это

подтверждается расчетами примера 13.3.

Из (13.14), (13.16) и (13.19) видно, что электромагнитный момент асинхронного двигателя, а также его максимальное и пусковое значения пропорциональны квадрату напряжения, подводимого к обмотке статора: М ≡ U 2 1. В то же время анализ выражения (13.15) показывает, что значение критического скольжения не зависит от напряжения U1. Это дает нам возможность построить механические характеристики М = f(s) дли разных значений напряжении U1 (рис. 13.5), из которых следует, что колебания напряжения сети U1 относительно его номинального значения U1ном, сопровождаются не только изменениями максимального и пускового моментов, но и изменениями частоты вращении ротора. С уменьшением напряжения сети частота вращения ротора

Читать еще:  92 или 95 бензин что заливать в двигатель

Рис. 13.5. Влияние напряжения на вид механической

характеристики асинхронного двигателя

снижается (скольжение увеличивается). Напряжение U1 влияет на значение максимального момента М1mах, а также на перегрузочную способность двигателя λ = Мmax /Mном . Так, если напряжение U1, понизилось на 30%, т. е. U1 = 0,7 U1ном, то максимальный момент асинхронного двигателя уменьшится более чем вдвое:

M / max = 0,7 2 Мmax = 0,49 Mmах. На сколько же уменьшится перегрузочная способность двигателя? В случае если, к примеру, при номинальном напряжении сети перегрузочная способность λ = Mmax /Mном = 2 , то при понижении напряжения на 30% перегрузочная способность двигателя λ’ = М’maxном = 0,49 Mmax /Mном = 0,49 2 = 0,98 , т.е двигатель не в состоянии нести даже номинальную нагрузку.

Как следует из (13.16), значение максимального момента двигателя не зависит от активного сопротивления ротора r / 2 . Что же касается критического скольжения sкр, то, как это видно из (13.15) оно пропорционально сопротивлению r2‘. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, если и асинхронном двигателœе постепенно увеличивать активное сопротивление цепи ротора, то значение максимального момента будет оставаться неизменным, а критическое скольжение будет увеличиваться (рис. 13.6). При этом пусковой момент двигателя Мп возрастает с увеличением сопротивления r2‘ до некоторого значении. На рисунке это соответствует сопротивлению г2ш, при котором пусковой момент равен максимальному. При дальнейшем увеличении сопротивления r2‘ пусковой момент уменьшается.

Анализ графиков М = f(s) приведенных на рис. 13.6, также показывает, что изменения сопротивления ротора r2‘ сопровождаются изменениями частоты вращения: с увеличением r2‘ при не­изменном нагрузочном моменте Мст скольжение увеличивается, ᴛ.ᴇ. частота вращения уменьшается (точки 1, 2, 3 и 4).

Рис. 13.6. Влияние активного сопротивленияобмотки ротора на механическуюхарактеристику асинхронного двигателя

Влияние активного сопротивления обмотки ротора на форму механических

характеристик асинхронных двигателœей используется при проектировании двигателœей. К примеру, асинхронные двигатели общего назначения должны иметь «жесткую» скоростную характеристику (см. рис. 13.7), т. е. работать с небольшим номинальным скольжением. Это достигается применением в двигателœе обмотки ротора с малым активным сопротивлением r2‘ . При этом двигатель имеет более высокий КПД за счет снижения электрических потерь в обмотке ротора (Рэ2 = m1I /2 2) .Выбранное значение г2‘ должно обеспечить двигателю требуемое значение пускового момента. При крайне важности получить двигатель с повышенным значением пускового момента

увеличивают активное сопротивление обмотки ротора. Но при этом получают двигатель с большим значением номинального скольжения, следовательно, с меньшим КПД.

Рассмотренные зависимости M = f(U1) и М = f(r2‘) имеют также большое практическое значение при рассмотрении вопросов пуска и регулирования частоты вращения асинхронных двигателœей (см. гл. 15).

Регулирование скорости двигателя с помощью изменения напряжения питания

Данный способ регулирования можно осуществить, если включить в цепь автотрансформатор, перед статором, после питающих проводов. При этом, если снижать напряжение на выходе автотрансформатора, то двигатель будет работать на пониженном напряжении. Это приведёт к снижению частоты вращения двигателя, при постоянном моменте нагрузки, а также к снижению перегрузочной способности двигателя. Это связано с тем, что при уменьшении напряжения питания, максимальный момент двигателя уменьшается в квадрат раз. Кроме того, этот момент уменьшается быстрее, чем ток в цепи ротора, а значит, растут и потери, с последующим нагревом двигателя.

Способ регулирования изменением напряжения, возможен только вниз от естественной характеристики, так как увеличивать напряжение выше номинального нельзя, потому что это может привести к большим потерям в двигателе, перегреву и выходу его из строя.

Кроме автотрансформатора, можно использовать тиристорный регулятор напряжения.

Настройка частотного преобразователя для электродвигателя

Для того чтобы преобразователь частоты для асинхронного двигателя в полном объеме выполнял свои функции, его необходимо правильно подключить и настроить. В самом начале подключения в сети перед прибором размещается автоматический выключатель. Его номинал должен совпадать с величиной тока, потребляемого двигателем. Если частотник предполагается эксплуатировать в трехфазной сети, то автомат также должен быть трехфазным, с общим рычагом. В этом случае при коротком замыкании на одной из фаз можно оперативно отключить и другие фазы.

Читать еще:  Что будет если не менять масло в двигателе калина

Ток срабатывания должен обладать характеристиками, полностью соответствующими току отдельной фазы электродвигателя. Если частотный преобразователь планируется использовать в однофазной сети, в этом случае рекомендуется воспользоваться одинарным автоматом, номинал которого должен в три раза превышать ток одной фазы. Независимо от количества фаз, при установке частотника, автоматы не должны включаться в разрыв заземляющего или нулевого провода. Рекомендуется использовать только прямое подключение.

При правильной настройке и подключении частотного преобразователя, его фазные провода должны соединяться с соответствующими контактами электродвигателя. Предварительно обмотки в двигателе соединяются по схеме «звезда» или «треугольник», в зависимости от напряжения, выдаваемого преобразователем. Если оно совпадает с меньшим значением, указанным на корпусе двигателя, то применяется соединение треугольником. При более высоком значении используется схема «звезда».

Далее выполняется подключение частотного преобразователя к контроллеру и пульту управления, который входит в комплект поставки. Все соединения осуществляются в соответствии со схемой, приведенной в руководстве по эксплуатации. Рукоятка должна находиться в нейтральном положении, после чего включается автомат. Нормальное включение подтверждается световым индикатором, загорающимся на пульте. Для того чтобы преобразователь заработал, нажимается кнопка RUN, запрограммированная по умолчанию.

После незначительного поворота рукоятки, двигатель начинает постепенно вращаться. Для переключения вращения в обратную сторону, существует специальная кнопка реверса. Затем с помощью рукоятки настраивается нужная частота вращения. На некоторых пультах вместо частоты вращения электродвигателя, отображаются данные о частоте напряжения. Поэтому рекомендуется заранее внимательно изучить интерфейс установленной аппаратуры.

Импульсное регулирование частоты вращения ДПТ НВ

Сущность этого способа регулирования иллюстрируется схемой, изображен­ной на рис. 29.7, а. Цепь обмотки якоря двигателя параллельного (независимого) возбуждения периодически прерывается ключом К. Во время замыкания цепи якоря на время t к обмотке якоря подводится напряжение U = Uимпи ток в ней достигает значения Iamax. Затем ключом К цепь якоря размыкают и ток в ней убывает, достигая к моменту следующего замыкания цепи значения Iamin (при размыкании ключа К ток в обмотке якоря замыкается через диод VD). При следующем замыкании ключа К ток достигает зна­чения Iamax и т. д. Таким образом, к обмотке якоря подводится не­которое среднее напряжение

где Т— отрезок времени между двумя следующими друг за другом импульсами напряжения (рис. 29.7, б); — коэффициент управления.

При этом в обмотке якоря проходит ток, среднее значение которого .

При импульсном регулировании частота вращения двигателя

Таким образом, импульсное регулирование частоты вращения аналогично регулированию изменением подводимого к цепи якоря напряжения. С целью уменьшения пульсаций тока в цепи якоря включена катушка индуктивности (дроссель) , а частота подачи импульсов равна 200—400 Гц.

На рис. 29.7, в представлена одна из возможных схем им­пульсного регулирования, где в качестве ключа применен управ­ляемый диод — тиристор VS. Открывается тиристор подачей крат­ковременного импульса от генератора импульсов (ГИ) на управляющий электрод (УЭ) тиристора. Цепь L1C, шунтирующая тиристор, служит для запирания последнего в период между двумя управляющими импульсами. Происходит это следующим образом: при открывании тиристора конденсатор С перезаряжается через контур L1C и создает на силовых электродах тиристора напряже­ние, обратное напряжению сети, которое прекращает протекание тока через тиристор. Параметрами цепи L1C определяется время (с) открытого состояния тиристора: . Здесь L1 выража­ется в генри (Гн); С — в фарадах (Ф).

Рис. 29.7. Импульсное регулирование частоты вращения двига­теля постоянного тока

Значение среднего напряжения Uср регулируется изменением частоты следования управляющих импульсов от генератора им­пульсов на тиристор VS.

Жесткие механические характеристики и возможность плав­ного регулирования частоты вращения в широком диапазоне оп­ределили области применения двигателей независимого возбуж­дения в станочных приводах, вентиляторах, а также во многих других случаях регулируемого электропривода, где требуется ус­тойчивая работа при колебаниях нагрузки.

Мощность электродвигателя. Секреты энергоэкономии.

Мы часто сталкиваемся со спорными точками зрения на достаточно простые вещи, которые касаются физики, поэтому заранее просим прощения у специалистов за простой язык и «разжевывание». В этой статье мы детально разберем понятия мощности электродвигателя, методы нахождения потребляемой мощности из сети, а также попробуем понять как можно сэкономить на электроэнергии. Сразу оговоримся, что разбирать будем асинхронный тип электродвигателя как наиболее часто используемый.

Читать еще:  В чем разница между синхронным и асинхронным двигателями

Итак, любой электродвигатель имеет базовые характеристики, которые указывает завод-производитель на шильде каждого своего изделия.

Как видим, на шильде указаны:

1) Тип электродвигателя и заводской номер

2) Количество фаз 3, частота тока 50 Hz, подключение треугольник/звезда 220/380В, номинальные токи 2,7/1,6А

3) Номинальная мощность электродвигателя на валу 0,55кВт, номинальная частота вращения вала 1360 об/мин, КПД 75%, косинус фи 0,71

4) Режим работы S1 (постоянный), класс изоляции обмоток F, ГОСТ

5) Степень защиты от пыли и влаги IP54, год выпуска

Как же определить какова потребляемая мощность электродвигателя от сети? Для начала разберемся в понятиях. Номинальная мощность электродвигателя, которая указывается на шильдике электродвигателя это та мощность, которую электродвигатель выдает в установившемся номинальном режиме работы при условии сбалансированной оптимальной работы всего механизма, который приводят электродвигателем. Каждый механизм имеет свою энергетическую характеристику и оптимальный режим работы с точки зрения энергопотребления. Таким образом, первая задача, которую стоит решить для достижения минимизации потребляемой энергии – это правильный подбор электродвигателя для привода того или иного механизма.

Потребляемая мощность электродвигателя от сети является динамической величиной и зависит от нагрузки на валу электродвигателя и потерь мощности на неполезной работе, такой как трение, нагрев и т.д. Наилучший способ определения потребляемой из сети мощности – это эмпирический, поскольку любые расчетные методики дадут значительную погрешность, а погрешности в вопросах энергоэффективности недопустимы. Таким образом, для максимально точного определения потребляемой мощности электродвигателя от сети рекомендуем «погонять» приводимый механизм в различных стандартных режимах работы, измеряя и фиксируя токи в каждом из режимов при помощи токосъемных инструментов. А еще лучше – воспользоваться цифровым счетчиком электрической энергии.

Легко заметить, что в нагруженных режимах работы таких как пуск, работа под нагрузкой, номинальный режим, торможение, токи в обмотках увеличиваются, повышаются ЭДС, крутящий момент на валу и т.д. Отсюда следует вторая задача, которую следует решить для снижения потребляемой мощности электродвигателя – задача снижения линейных токов в режимах высокого потребления электроэнергии.

Путем регулирования частоты тока

Этот метод получил пока наибольшее распространения ни смотря на высокие расходы на внедрение, частотное регулирование производится при помощи специальных частотных преобразователей, стоимость которых часто превышает в несколько раз стоимость самого электропривода. Очень безопасный и эффективный метод снижения мгновенной мощности электродвигателя.

Регулирование напряжения

Экономия электроэнергии путем регулирования частоты вращения электродвигателя плавным изменением напряжения питания при помощи регулятора напряжения. Этот метод применим в некоторых случаях, однако опасен остановками электродвигателя из-за т.н. опрокидывания, когда момент сопротивления механизма выше, чем мощность электродвигателя на валу вследствие непропорционального снижения питающего напряжения. Также такой метод локально снизить мощность электродвигателя требует дополнительных средств контроля режимов работы электродвигателя, контроля температуры обмоток, контроля частоты вращения, мощности электродвигателя на валу.

Решение вопроса влияния несимметричности напряжения сети на мощность электродвигателя.

Качество напряжения сети непосредственно влияет на потребление электроэнергии. На симметричность напряжения влияют сами потребители электроэнергии неравномерной нагрузкой по фазам, используя устройства нелинейной нагрузки. Самые «весомые» создатели нелинейной нагрузки – подстанции электротранспорта. Из-за несимметричности напряжения в асинхронном двигателе создается эллиптическое магнитное поле и несколько крутящих моментов, один из которых тормозит систему и расходует энергию.

Реактивная мощность электродвигателя. Внедрение компенсаторов.

Как известно, потребляемая из сети электрооборудованием мощность состоит из ряда составляющий, главными из которых являются активная и реактивная мощность. Последние годы в мире динамично развивается направление по внедрению компенсаторов реактивной мощности, что позволяет экономить электроэнергию промышленным потребителям.

Микроконтроллеры

Также перспективным направлением по экономии электроэнергии при использовании асинхронных двигателей является внедрение микроконтроллеров, которые позволяют в режиме реального времени мониторить момент сопротивления приводимого оборудования и соотносить его с крутящим моментом электродвигателя. При снижении момента сопротивления, микроконтроллер передает команду регулятору напряжения. Такая компенсацию реализуется без изменения частоты вращения, поэтому применима только для оборудования, не требующего регулировки частоты.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector