Avtonova37.ru

Авто мастер
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Водородный двигатель space engineers для чего нужен

Широко используются на поверхности планет( Земля идеально подходит). Для функционирования необходима энергия, полученная от батарей, реакторов и тд.

ПлюсыМинусы
Просты в использованииБесполезны в космосе
Хорошее соотношение мощности/ скорости разгона

Как я строил гексапод в Space Engineers. Часть 1

Здравствуйте. Я хочу рассказать про проектирование и программирование системы управления конечностями в гексаподе, построенном в Space Engineers.

Забегая вперед скажу, что всё, что касается программирования в Space Engineer, будет в следующей статье. В этой я расскажу про обратную кинематику и покажу прототип на HTML Canvas в котором я занимался отладкой алгоритмов.

Предыстория и постановка задачи.

Изначально было построено сочлененное шасси, а затем на нем копательный агрегат. Такая конфигурация обеспечивала контакт всх колес с поверхностью на больших неровностях, в том числе и при скручивании.

Вроде такого

Но я столкнулся с невозожностью его точно разместить на месторождении, так-как колеса часто соскальзывали вниз (проблема физики — большинство блоков (в том числе и колеса) имеют слишком малый коэффициент трения). Колесная платформа с цельноповоротными колесными модулями оказалась слишком громоздкой и страдала от периодических physics explosion. В результате было решено строить шагающего робота — а именно — гексапод, как самую стабильную шагаюшую платфрому.

С чего начнет строить гексапод нормальный человек? Наверное зайдет в игру и начнет строить тело робота с конечностями, а потом думать как это всё оживлять. Но это не наш метод (ц)

Я начал с теории

Для строения ноги была выбрана следующая схема:

Inner joint — внутренний сустав, качающийся по оси рысканья (yaw)
Mid joint и outer joint — внешние суставы, качающиеся по оси тангажа (pitch). Направление отсчета — от основания ноги к концу ноги.

Угол 0 для всех суставов означает, что нога полностью выпрямлена (прямую ногу будет проще строить в игре).

Задача — при заданной целевой точке найти такие углы поворота сустовов, что-бы конец ноги оказался в заданной точке. Значит время вспоминать тригонометрию.

Угол внутреннего сустава можно найти через арктангенс горизонтальных координат цели.

С двумя другими суставами посложнее. У нас есть длина всех суставов. Можно найти угол к горизонту и расстояние между средним суставом и землей, а так-же расстояние до целевой точки.

Дальше через теорему косинусов нужно найти углы треугольника по известным сторонам.

Так это выглядит в коде:

Движение

Далее. Робот должен ходить, верно? То-есть мы должны передавать N раз в секунду каждой ноге координаты заданной позиции. С учетом того, что ног 6 и 3 из них двигаются в противофазе получается как-то сложно. Нужно ввести новый уровень абстракции.

А что если мы представим что нога движется по окружности и ей нужно передавать угол обозначающий позицию на этой окружности? Удаление в сторону становится постоянным и нужно передавать только один параметр, меняющийся циклично. Тогда целевые координыты находятся через синус и косинус.

Пока достаточно

Обдумывая как всё будет работать я понял, что задача слишком сложная для того, что-бы всё заработало с первого раза (с дебагом в Space Engineers всё плохо, но об этом в следующей части).

Поэтому я решил написать визуализатор. Мне хотелось его сделать без дополнительных библиотек и иметь возможность запускать его в один клик и без привязки к окружению.
Поэтому был выбран JS + HTML Canvas.

А сейчас нарисуем сову.

Шаг — структура данных для управления ногой:

Но для отрисовки понадобятся еще несколько классов:

Обертка над Canvas:

В классе Leg есть метод для получения текущих координат суставов. Вот эти координаты мы и будем отрисовывать.

Так-же я добавил отрисовку точек, в которых находилась нога в N последних тиков.

И наконец Worker, который будет запускать симуляцию:

Правда миленько?

Здесь видно, что траектория движения ног отличается от окружности. Движение по вертикали напоминает урезанную синусоиду, а движение по горизонтали линейно. Это должно уменьшить нагрузку на ноги.

Теперь несколько пояснений, что происходит в коде.

Как научить робота поворачивать?

Для поворота я рассмотрел 2 ситуации:

Если робот стоит — ноги двигаются по окружности.

Единственное но — движение именно по окружности сильно усложнило-бы код с текущей реализацией. Поэтому ноги двигаются по касательной к окружности.

Когда робот двигается нужно реализовать что-то вроде Ackermann steering geometry с дифференциалом.

То-есть длина шага ног, двигающихся по меньшему радиусу, — меньше. А угол поворота — больше.

Что-бы реализовать изменение угла поворота для каждой ноги я придумал следующий алгоритм:

1. Считаем угол от изначального положения ноги к центру робота:

2. Считаем угол от изначального положения ноги к (центру робота + смещение, которое отвечает за поворот — это изменяемый параметр):

Читать еще:  Через сколько пробега менять масло в двигателе ваз 2114

3. Поворачиваем шаг на разницу этих углов:

Но это не всё. Еще нужно изменять длину шага. Реализация в лоб — домножать длину шага на изменение расстояния до центра — имело фатальный недостаток — внешние ноги слишком широко шагали и начинали задевать друг друга.

Поэтому пришлось усложнить реализацию:

1. Считаем изменение расстояния до центра для каждой ноги:

0.3 — магическое число

2. Находим отношение между минимальным и максимальным изменением

Этот множитель отражает разницу между минимальным и максимальным изменением расстояния до центра. Он всегда меньше 1 и если на него домножать длину шага — она при повороте не будет увеличиваться даже для внешних по отношению к направлению поворота ног.

Вот как это работает (gif 2 мегабайта):

→ Поиграться с результатом можно тут

Для более пристального изучения рекомендую сохранить содержимое в html файл и продолжить в любимом текстовом редакторе.

В следующей публикации я расскажу как заставил всё это работать в Space Engineers.
Спойлер: в Programmable Block можно писать на C# почти последней версии.

На сервере появился Jump Gate Server
Теперь вы можете совершать прыжки с основного сервера где вы строитесь и добываете ресурсы, прыгать на сервер с опасными и злобными NPC пиратами.
Для совершения прыжка необходимо собрать ванильный прыжковый двигатель. В самом джамп драйве есть (через панель управления) кнопка для прыжка.
Координаты для прыжка с основного на NPC сервер
GPS:Jump Gate:244344.03:374155.2:955609.24:
Координаты для прыжка с NPC на основной сервер
GPS:Jump Gate:0:0:0:
Для прыжка необходимо находиться не далее 3000 метров от этих точек. При прыжке на сервера учитывайте лимит блоков Основного сервера! А так же готовьте ресурсы заранее что бы отремонтировать джамп драйв, при варпе, он повреждается. Наноботов на NPC сервере есть, но перед полетом, срезаем нанобота, если не желаем потерять промитий.

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

  • Новости

Геймплей игры основан на строительстве космических кораблей, станций и исследовании планет и астероидов с целью найти ресурсы. При создании или редактировании мира доступно несколько расширенных опций для изменения того, как игрок будет взаимодействовать с миром.

Доступны три типа структур: малые корабли, большие корабли и станции. В зависимости от выбранного размера блоков создаются либо малые корабли, либо большие корабли/станции. Станцией структура становится если её блоки пересекаются с вокселями планеты или астероида.

Творческий режим игры [ править | править код ]

В творческом режиме игроки обладают неограниченными ресурсами, могут мгновенно создавать инструменты и блоки. Некоторые дополнительные возможности, такие как режим симметрии, копирование и вставка кораблей, доступны только в этом режиме. Первоначально творческий режим был единственным режимом, доступным в игре.

Режим выживания [ править | править код ]

В режиме выживания игрокам необходимо добывать, собирать и очищать различные ресурсы, чтобы создавать инструменты, оружие и блоки, а также производить электричество. Ресурсы можно добывать вручную с помощью ручного бура или с использованием кораблей с необходимым оборудованием. Чтобы избежать смерти, игроки должны следить за своим здоровьем, энергией и уровнем кислорода. Здоровье и энергия игрока могут быть восстановлены с использованием медицинского блока (отдельно энергию можно также восстановить в кабине пилота). Запас кислорода может быть восполнен в медблоке, если он подключён к генератору O2/H2, или при помощи кислородного баллона, заправляемого в вышеупомянутом генераторе. С недавних пор, в игре присутствует опция «Прогресс», позволяющая игроку постепенно открывать доступ к чертежам.

Планеты [ править | править код ]

12 ноября 2015 года были добавлены планеты. [2] На данный момент в игре присутствуют 5 планет : Земля, Марс, Чужая планета, Тритон Пертам и их спутники: Луна, Европа, Титан

Неизвестные сигналы [ править | править код ]

17 августа 2017 года в режим выживания были добавлены «неизвестные сигналы». [3] Эти сигналы появляются случайно в определённом диапазоне вокруг игрока и указывают расположение маленького зонда с помощью координат GPS. Каждый зонд имеет кнопку, которая при нажатии на неё, случайным образом выдаёт скин на снаряжения или на скафандр, либо не даёт ничего. Так же в зонде находится маленький контейнер с различными ресурсами или снаряжением полезными при строительстве. Скины на снаряжение или скафандр могут быть проданы или куплены на торговой площадке Steam.

Ядерный ракетный двигатель строят для полетов на Марс. Чем он опасен?

NASA разработает ядерный двигатель для быстрого полета на Марс. Ракеты с ядерными двигателями будут более мощными и вдвое более эффективными, чем с химическими, которые используются сегодня. Рассказываем подробнее о разработке, как быстро она будет передвигаться и чем опасна.

Читать еще:  Чем заменить датчик давления масла на 406 двигателе
Читайте «Хайтек» в

Что такое ядерный ракетный двигатель?

Ядерный ракетный двигатель (ЯРД) — разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги.

Традиционный ЯРД в целом представляет собой конструкцию из нагревательной камеры с ядерным реактором как источником тепла, системы подачи рабочего тела и сопла. Рабочее тело (как правило — водород) подается из бака в активную зону реактора, где, проходя через нагретые реакцией ядерного распада каналы, разогревается до высоких температур и затем выбрасывается через сопло, создавая реактивную тягу.

Существуют различные конструкции ЯРД: твердофазный, жидкофазный и газофазный — соответствующие агрегатному состоянию ядерного топлива в активной зоне реактора — твердое, расплав или высокотемпературный газ (либо даже плазма).

Твердофазный ядерный ракетный двигатель

В твердофазных ЯРД (ТфЯРД) делящееся вещество, как и в обычных ядерных реакторах, размещено в сборках-стержнях (ТВЭЛах) сложной формы с развитой поверхностью, что позволяет эффективно нагревать газообразное рабочее тело (обычно — водород, реже — аммиак), одновременно являющееся теплоносителем, охлаждающим элементы конструкции и сами сборки.

Температура нагрева ограничена температурой плавления элементов конструкции (не более 3000 К). Удельный импульс твердофазного ЯРД, по современным оценкам, составит 850–900 с, что более чем вдвое превышает показатели наиболее совершенных химических ракетных двигателей.

Наземные демонстраторы технологий ТфЯРД в ХХ веке были созданы и успешно испытаны на стендах (программа NERVA в США, РД-0410 в СССР).

Газофазный ядерный ракетный двигатель

Газофазный ядерный реактивный двигатель (ГЯРД) — концептуальный тип реактивного двигателя, в котором реактивная сила создаётся за счёт выброса теплоносителя (рабочего тела) из ядерного реактора, топливо в котором находится в газообразной форме или в виде плазмы. Считается, что в подобных двигателях удельный импульс составит 30–50 тыс. м/с.

Перенос тепла от топлива к теплоносителю достигается в основном за счет излучения, большей частью в ультрафиолетовой области спектра (при температурах топлива около 25 000 °C).

Ядерный импульсный двигатель

Атомные заряды мощностью примерно в килотонну на этапе взлета должны взрываться со скоростью один заряд в секунду. Ударная волна — расширяющееся плазменное облако — должна была приниматься «толкателем» — мощным металлическим диском с теплозащитным покрытием и потом, отразившись от него, создать реактивную тягу.

Импульс, принятый плитой толкателя, через элементы конструкции должен передаваться кораблю. Затем, когда высота и скорость вырастут, частоту взрывов можно будет уменьшить. При взлете корабль должен лететь строго вертикально, чтобы минимизировать площадь радиоактивного загрязнения атмосферы.

В США космические разработки с использованием импульсных ядерных ракетных двигателей осуществлялись с 1958 по 1965 год в рамках проекта «Орион» компанией «Дженерал Атомикс» по заказу ВВС США.

По проекту «Орион» проводились не только расчеты, но и натурные испытания. Летные испытания моделей летательного аппарата с импульсным приводом (для взрывов использовалась обычная химическая взрывчатка).

Были получены положительные результаты о принципиальной возможности управляемого полёта аппарата с импульсным двигателем. Также для исследования прочности тяговой плиты проведены испытания на атолле Эниветок.

Во время ядерных испытаний на этом атолле покрытые графитом стальные сферы были размещены в 9 м от эпицентра взрыва. Сферы после взрыва найдены неповрежденными, тонкий слой графита испарился (аблировал) с их поверхностей.

В СССР аналогичный проект разрабатывался в 1950–1970-х годах. Устройство содержало дополнительные химические реактивные двигатели, выводящие его на 30–40 км от поверхности Земли. Затем предполагалось включать основной ядерно-импульсный двигатель.

Основной проблемой была прочность экрана-толкателя, который не выдерживал огромных тепловых нагрузок от близких ядерных взрывов. Вместе с тем были предложены несколько технических решений, позволяющих разработать конструкцию плиты-толкателя с достаточным ресурсом. Проект не был завершен. Реальных испытаний импульсного ЯРД с подрывом ядерных устройств не проводилось.

Ядерная электродвигательная установка

Ядерная электродвигательная установка (ЯЭДУ) используется для выработки электроэнергии, которая, в свою очередь, используется для работы электрического ракетного двигателя.

Подобная программа в США (проект NERVA) была свернута в 1971 году, но в 2020 году американцы вновь вернулись к данной теме, заказав разработку ядерного теплового двигателя (Nuclear Thermal Propulsion, NTP) компании Gryphon Technologies для военных космических рейдеров на атомных двигателях для патрулирования окололунного и околоземного пространства, также с 2015 года идут работы по проекту Kilopower.

С 2010 года в России начались работы над проектом ядерной электродвигательной установки мегаваттного класса для космических транспортных систем (космический буксир «Нуклон»). На 2021 год ведется отработка макета; к 2025 году планируется создать опытные образцы данной ядерной энергоустановки; заявлена плановая дата летных испытаний космического тягача с ЯЭДУ — 2030 год.

Мощность

По оценкам А. В. Багрова, М. А. Смирнова и С. А. Смирнова, ядерный ракетный двигатель может добраться до Плутона за 2 месяца и вернуться обратно за 4 месяца с затратой 75 тонн топлива, до Альфы Центавра за 12 лет, а до Эпсилона Эридана за 24,8 года.

Читать еще:  Как установить зажигание на волгу инжектор 406 двигатель

Ядерный двигатель опасен?

Основным недостатком является высокая радиационная опасность двигательной установки:

  • потоки проникающей радиации (гамма-излучение, нейтроны) при ядерных реакциях;
  • вынос высокорадиоактивных соединений урана и его сплавов;
  • истечение радиоактивных газов с рабочим телом.

Использование открытия российских ученых в гражданском секторе тесно связано с безопасностью ядерной силовой установки. Нужно было обеспечить безопасность его выхлопа.

Защита малогабаритного ядерного двигателя меньше, чем у большего по размерам, поэтому нейтроны будут проникать в «камеру сгорания», тем самым с некоторой вероятностью делая радиоактивным все вокруг.

Азот и кислород имеют радиоактивные изотопы с малым временем полураспада и не опасны. Радиоактивный углерод вещь долгоживущая. Но есть и хорошие новости.

Радиоактивный углерод образуется в верхних слоях атмосферы под действием космических лучей. Но главное, концентрация углекислого газа в сухом воздухе составляет всего 0,02÷0,04%.

Учитывая же, что процент углерода, становящийся радиоактивным, величина еще на несколько порядков меньшая, предварительно можно считать, что выхлоп ядерных двигателей не более опасен, чем выхлоп ТЭЦ, работающей на угле.

Собираются ли использовать ядерный двигатель для новейших полетов в космос?

Да, в начале февраля стало известно, что NASA проведет тестирование новейшего ядерного двигателя для полетов на Марс. Ожидается, что с его помощью можно будет добраться до Красной планеты всего лишь за три месяца.

В последние годы ученые и инженеры NASA и других космических агентств мира активно обсуждают планы по постройке постоянных обитаемых баз на поверхности Луны и Марса.

  • В чем его преимущества?

Главным ключом к обеспечению их автономности и удешевлению постройки специалисты NASA считают технологии трехмерной печати, позволяющие использовать воду и местные ресурсы — почву, горные породы и газы из атмосферы — для постройки зданий базы прямо на месте.

Подобные принтеры, как показывают опыты на борту МКС и на Земле, позволяют напечатать почти все необходимое для жизни колонистов на Марсе, за исключением одного, самой главного компонента базы — источника питания, чья мощность была бы достаточной для обеспечения работы самого 3D-принтера, а также питания и обогрева всей базы.

В рамках подготовки NASA к высадке на Марс в 2035 г. американская компания Ultra Safe Nuclear Technologies (USNT) из Сиэтла предложила свое решение — ядерный тепловой двигатель (NTP)

  • Каким будет ядерный двигатель?

USNT предлагает классическое решение — ядерный двигатель с использованием сжиженного водорода в качестве рабочего тела: ядерный реактор вырабатывает тепло из уранового топлива, эта энергия нагревает жидкий водород, проходящий по теплоносителям, который расширяется в газ и выбрасывается через сопло двигателя, создавая тягу.

Одна из основных проблем при создании такого типа двигателей — найти урановое топливо, которое может выдерживать резкие колебания температуры внутри двигателя. В USNT утверждают, что решили эту проблему, разработав топливо, которое может работать при температурах до 2 400 градусов Цельсия.

Топливная сборка содержит карбид кремния: этот материал, используемый в слое триструктурально-изотропного покрытия, образует газонепроницаемую преграду, препятствующую утечке радиоактивных продуктов из ядерного реактора, защищая космонавтов.

Кроме того, для защиты экипажа и на случай непредвиденных ситуаций ядерный двигатель не будет использоваться во время старта с Земли — он начнет работу уже на орбите, чтобы минимизировать возможные повреждения в случае аварии или нештатной работы.

Что такое водородный двигатель

Водородный двигатель – попытка человечества создать вечный источник питания. Он оснащен электрохимическим генератором, за счет которого происходит преобразование. В основе реакции лежит окисление водорода и получение водяного пара, азота и электричества.

Важной для современного мира особенность является экологичность. Благодаря работе на водороде и умному расщеплению, на выходе мы получаем выхлоп с нулевым содержанием углекислого газа (CO2).

Советы

Использование блоков легкой брони объясняется тем, что благодаря ей у корабля будет меньший вес, а значит, передвигаться он будет быстрее.

Двигатели лучше использовать крупные, так как один большой двигатель занимает меньше места, чем несколько мелких. Перекрытие для них необходимо для того, чтобы не соприкасаться с другими объектами строения.

В Space Engineers корабли в космосе работают на ускорителях, но если нужно покинуть планету, корабль не запустится. Ускорители хороши для космоса, но на планете с гравитацией корабль попросту не взлетит. Тут есть маленькая хитрость — можно построить подобие пусковой установки. Для этого понадобятся гидрогенные накопители с запасом кислорода, а под ними устанавливается ускоритель. После этого корабль запустится, а ускоритель даст толчок для выхода в космос.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector