Avtonova37.ru

Авто мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вращающие моменты и механические характеристики асинхронных двигателей

Скольжение асинхронного двигателя

Асинхронный двигатель преобразовывает электрическую энергию в механическую. Механическая характеристика асинхронного двигателя, электромеханическая и другие содержат информацию, без которой невозможна его правильная эксплуатация.

Эта конструкция достаточно широко применяется в различных сферах человеческой жизнедеятельности. Без них немыслима работа станков, транспортеров, подъемно-транспортных машин. Двигатели, обладающие небольшой мощностью, широко используются в автоматике.

АВТОМАТИЗИРОВАННЫЙ ЭЛЕКТРОПРИВОД В ПРОКАТНОМ ПРОИЗВОДСТВЕ

ЧАСТОТНЫЕ МЕТОДЫ АНАЛИЗА

■Ч- В случае подачи на вход разомкнутой одноконтурной системы гармониче­ского колебания синусоидального типа с угловой частотой ш (для удобства сину­соидальную функцию, изображаемую на комплексной плоскости вектором, за­меняют показательной функцией с …

ОСОБЕННОСТИ ПЕРЕХОДНЫХ РЕЖИМОВ

В замкнутых системах автоматического управления под дей­ствием различных возмущений возникает переходный процесс, характеризующий переход системы из одного установившегося состояния к другому. Характер переходного процесса зависит от свойств и характеристик системы, …

ТИРИСТОРНЫЕ ПРЕОБРАЗОВАТЕЛИ ЧАСТОТЫ ДЛЯ РЕГУЛИРОВАНИЯ СКОРОСТИ ВРАЩЕНИЯ АСИНХРОННОГО ДВИГАТЕЛЯ

Электромашинные преобразователи частоты включают вра­щающиеся электрические машины, имеют механический метод управления частотой, громоздки в своем исполнении. Развитие силовой полупроводниковой техники привело к созданию регули­руемых электроприводов переменного тока, получающих питание от …

При работе многих механизмов, приводящихся во вращение асинхронными двигателями, в соответствии с технологическими требованиями возникает необходимость регулировать скорость вращения этих механизмов. Способы регулирования частоты (скорости) вращения асинхронных двигателей раскрывает соотношение:

.

Отсюда следует, что при заданной нагрузке на валу частоту вращения ротора можно регулировать:

  1. изменением скольжения;
  2. изменением числа пар полюсов;
  3. изменением частоты источника питания.

2.12.1. Изменение скольжения

Этот способ используют в приводе тех механизмов, где установлены асинхронные двигатели с фазным ротором. Например, в приводе подъемно-транспортных машин. В цепь фазного ротора вводится регулировочный реостат. Увеличение активного сопротивления ротора не влияет на величину критического момента, но увеличивает критическое скольжение (рис. 2.21).

На рис. 2.21 приведены механические характеристики асинхронного двигателя при разных сопротивлениях регулировочного реостата Rр3>Rр2>0, Rр1=0.

Как следует из рис. 2.21 при этом способе можно получить большой диапазон регулирования частоты вращения в сторону понижения. Основные недостатки этого способа:

  1. Из-за больших потерь на регулировочном реостате снижается коэффициент полезного действия, т.е. способ неэкономичный.
  2. Механическая характеристика асинхронного двигателя с увеличением активного сопротивления ротора становится мягче, т.е. снижается устойчивость работы двигателя.
  3. Невозможно плавно регулировать частоту вращения.

Из-за перечисленных недостатков этот способ применяют для кратковременного снижения частоты вращения.

2.12.2. Изменение числа пар полюсов

Эти двигатели (многоскоростные) имеют более сложную обмотку статора, позволяющую изменять ее число пар полюсов, и короткозамкнутый ротор. При работе асинхронного двигателя необходимо, чтобы обмотки ротора и статора имели одинаковое число пар полюсов. Только короткозамкнутый ротор способен автоматически приобретать то же число пар полюсов, что и поле статора. Многоскоростные двигатели нашли широкое применение в приводе металлорежущих станков. Нашли применение двух, трех и четырех скоростные двигатели.

На рис. 2.22 показана схема соединения и магнитное поле статора двигателя при последовательном (б) и параллельном (а) соединении полуобмоток.

У двухскоростного двигателя обмотка каждой фазы состоит из двух полуобмоток. Включая их последовательно или параллельно можно в 2 раза изменять число пар полюсов.

У четырехскоростного двигателя на статоре должно размещаться две независимые обмотки с разным числом пар полюсов. Каждая из обмоток позволяет в два раза изменять число пар полюсов. Например, у двигателя, работающего от сети c частотой f=50 Гц, со следующими частотами вращения 3000/1500/1000/500 [об/мин] с помощью одной из обмоток статора можно получить частоту вращения 3000 об/мин и 1500 об/мин (при этом р=1 и р=2). С помощью другой из обмоток можно получить частоту вращения 1000 об/мин и 500 об/мин (при этом р=3 и р=6)..

При переключении числа пар полюсов изменяется и магнитный поток в зазоре, что приводит к изменению критического момента Мкр (рис. 2.23 б). Если при изменении числа пар полюсов одновременно изменять и подведенное напряжение, то критический момент может остаться неизменным (рис. 2.23 а). Поэтому при этом способе регулирования могут быть получены два вида семейства механических характеристик (рис. 2.23).

Читать еще:  Что за обмотка при подключении двигателя 380 на 220

Достоинства этого способа регулирования: сохранение жесткости механических характеристик, высокий К.П.Д. Недостатки: ступенчатое регулирование, большие габариты и большая стоимость двигателя.

Принцип работы двигателя

Чтобы понять, как работают электродвигатели асинхронные трехфазные, необходимо провести один несложный эксперимент. Для этого вам понадобиться обычный магнит подковообразного типа и медный стержень. При этом магнит надо хорошо закрепить к рукоятке, с помощью которой его можно крутить на одном месте вокруг своей оси. Медный стержень закрепляется в подшипниках и устанавливается в пространство между концами (полюсами) магнита-подковы. То есть, стержень оказывается как бы внутри магнита, а, точнее сказать, внутри его плоскости вращении.

Принцип работы трехфазного асинхронного двигателя

Теперь надо просто вращать магнитное устройство за ручку. Лучше по часовой стрелке. Так как между полюсами есть магнитное поле, то оно также будет вращаться. При этом поле будет пересекать или рассекать своими силовыми линиями медный стержень-цилиндр. И тут включается закон электромагнитной индукции. То есть, внутри медного стержня начнут возникать вихревые токи. Они, в свою очередь, начнут образовывать свое собственное магнитное поле, которое будет взаимодействовать с основным магнитным полем.

При этом стержень начнет вращаться в ту же сторону, что и магнит. И вот тут возникает один момент, который также лежит в принципе работы электродвигателя. О нем было уже упомянуто. Если скорость вращения стержня будет такое же, как у магнита, то их силовые линии пересекаться не будут. То есть, вращения не будет в виду отсутствия вихревых токов.

И еще пару нюансов:

  • Магнитное поле вращается с той же скоростью, что и сам магнит, поэтому скорость называют синхронной.
  • А вот стержень вращается с меньшей скоростью, поэтому ее и называют асинхронной. Отсюда, в принципе, название и самого электрического мотора.

Внимание! Разница скоростей вращения магнитных полей не очень большая. Эту величину называют скольжением.

Кстати, определить величину скольжения несложно, для этого необходимо воспользоваться формулой:

  • S – это величина скольжения;
  • n – скорость вращения магнита;
  • n1 – скорость вращения ротора.

Мы каждый день узнаем о насоса что-нибудь новенькое, такое, о чем мы раньше, по многим причинам, и не задумывались. У нас есть насос, он прекрасно качает воду из источника, которой хватает на полив сада-огорода и пользование ею всеми членами семьи и на работу всей бытовой техники. Зачем нам знать еще больше об этом удивительном агрегате?

Мы даже знаем сейчас, что каждый, в принципе, бытовой насос, в зависимости от его конструкции, можно использовать, как в качестве перекачивающего устройства, придав ему механическую энергию внешнего привода, так и в качестве двигателя, через который можно получить дополнительную энергию. Например, раскручивая ротор электродвигателя насоса струей поступающей жидкости, можно, при некотором изменении конструкции, получить источник электроэнергии в доме.

Если взять более простые конструкции, то можно привести пример водяной мельницы, где двигателем и своеобразным механическим насосом можно рассматривать ее водное колесо. Многие, если не сказать, большинство гидронасосов имею возможность обратного применения.

Но сейчас речь пойдет совсем о другом. Мы поговорим о стандартном применении гидронасосов и источниках энергии для них, которые применяются в бытовых и промышленных агрегатах перекачки воды. Мы будем говорить о самом выгодном виде механических двигателей для насосов – электродвигателях, которые имеют самое широкое распространение в насосах, как бытовых, так и во всех отраслях промышленности.

Асинхронный электродвигатель. Плюсы и минусы применения. Конструкции типов

Положительные стороны от применения электродвигателей в работе насосов видны с первого раза: это частые включения (повторные пуски) двигателей в работу в зависимости от водных параметров в магистрали, малое энергопотребление, простота конструкций и выгодность производства, динамичность и малые размеры электродвигателей и многое другое.

Читать еще:  Чем отличается четырехтактный двигатель от двухтактного лодочного мотора

Мы разберем самый «выгодный» в производстве и простой в бытовом применении асинхронный электродвигатель (индукционный двигатель), как электрическую машину переменного тока с частотой вращения ротора меньшим по сравнению с частотой магнитного поля, которое создается токами в обмотке статора:

Он прост в изготовлении;

Имеет относительно низкую цену;

Надежен и неприхотлив при работе;

Энерго- и эксплуатационно малозатратен;

Имеет простой доступ к подключению в домашнюю электросеть без дополнительных преобразующих устройств;

Нет необходимости регулировать частоту вращения ротора.

Но при этом такие электромашины с асинхронным (индукционным) двигателем:

Имеют низкий по силе пусковой момент;

Большую величину пускового тока;

Мощность с низким коэффициентом;

Сложности с регулировкой скоростных характеристик ротора и отсутствие необходимой точности вращения;

Скоростные характеристики вращения ротора ограничиваются частотными показателями сети (бытовая сеть имеет частоту в 50 Гц – двигатель может максимально развить обороты не более 3000 в минуту);

Огромная (в квадрате) связь электромагнитного поля на статоре с напряжением в сети – при любом изменении напряжения в 2 раза, вращающий момент двигателя измениться в 4 раза, что намного хуже таких же показаний в электродвигателях на постоянном токе.

Для людей далеких от всяких технических конструкций проведем легкий «ликбез»:

Асинхронный электродвигатель имеет в своей конструкции статор (часть электромотора, которая находится в неподвижном, стабильном положении) и ротор (часть, которая вращается при подключении двигателя к сети), они разделены воздушным зазором и не соприкасаются между собой;

Статорная обмотка является многофазной (3-хфазной), с проводниками равноудаленными один от другого на 120 градусов относительно оси вращения;

Магнитное поле возникает в магнитопроводе статора, который меняет полярность под воздействием частоты тока проходящего по обмотке. Магнитопровод представляет собой пластины из электротехнической стали, собранных методом шихтовки в общий блок;

Роторы в асинхронном двигателе могут быть конструктивно 2-х типов: короткозамкнутый и фазный. Их единственное различие – это исполнение обмотки на роторе, при аналогичном магнитопроводе как у статора.

Короткозамкнутый ротор имеющий обмотку в виде «беличьего колеса» по аналогии конструкции, собирается из алюминиевых (иногда из меди или латуни) стержневых проводников, которые замкнуты с 2-мя торцевыми кольцами, проходя через специальные пазы в сердечнике ротора.

У такого типа обмоток ротора при нерегулируемом пуске образуется не очень большой по величине пусковой момент, но требующий больших величин тока. Сейчас применяют в основном роторы с глубокими пазами для стержней, что позволяет увеличить сопротивление в обмотке и уменьшить величину пускового тока. Из-за таких недостатков раньше мало применяли короткозамкнутую схему обмотки ротора, но теперь при развитии линии частотных преобразователей многие фирмы достигли эффекта плавного пуска электродвигателей, регулируя наращивание частоты пускового тока.

Так появились электромашины с короткозамкнутой схемой ротора со ступенчатым регулированием скорости вращения вала, появились многоскоростные электродвигатели с изменением числа пар полюсов в обмотке статора.

Разновидностью асинхронного электродвигателя с короткозамкнутым ротором считаются двигатели с массивными роторами, где эта деталь механизма изготовлена полностью из ферромагнитного материала (стальной цилиндр) – это одновременно и магнитопровод и обмотка-проводник. Вращение ротора здесь происходит за счет создания индукции магнитного поля ротора, во взаимодействии с вихревыми токами магнитного потока статора. Такие конструкции намного проще изготавливать, следовательно они обходятся дешевле в производстве, имеют большую механическую прочность, что очень необходимо для машин с большой скоростью вращения и они имеют более высокую величину пускового момента.

Принцип работы асинхронного электродвигателя с фазовым ротором

Асинхронные электродвигатели с фазовым ротором допускают плавное регулирование скорости вращения вала ротора в широком диапазоне. Фазный ротор содержит в своей конструкции многофазную (3-хфазную) обмотку, выведенную на 2 контактных кольца, которые соединены с ротором единой конструкцией. Соединение с регулированной по величине напряжения электросетью происходит за счет графитовых или металлографитовых щеток, соприкасаемых с кольцами в единую цепь с обмотками ротора.

Читать еще:  Датчик давления масла на двигателе cummins газель

В конструкцию управления работой ротора входят так же:

Пускорегулирующий реостат, как активное сопротивление к каждой фазе;

Дроссели индуктивности каждой фазы роторного узла, что, в конечном итоге, позволяет уменьшить пусковые токи и держит их на постоянном уровне;

Дополнительны источник постоянного тока, что позволяет получать величины синхронной электромашины, то есть зависимость оборотов от частоты напряжения на ротора без разниц величин;

Для управления скоростными характеристиками и электромагнитными полями на роторе включено питание установки от инвертора для машин с двойным питанием. Но возможно использовать эту конструкцию без помощи инвертора с заменой фазировки на противоположную от статорной.

Возможны еще несколько вариантов электродвигателей для насосов. Например, трёхфазный коллекторный асинхронный двигатель с питанием со стороны ротора и другие электромашины.

Способы торможения двигателей

При торможении противовключением меняются два провода соединяющих трехфазную сеть с обмотками статора, изменяя при этом направление движения магнитного поля машины. При этом наступает режим электромагнитного тормоза. Для динамического торможения обмотка статора отключается от трехфазной сети и включается в сеть постоянного тока. Неподвижное поле статора заставляет ротор быстро останавливаться.

Для лучшего понимания механизмов торможения двигателей рекомендуем также подробнее прочитать все что нужно знать о шаговых электродвигателях.

После отключения от сети электродвигатель продолжает движение по инерции. При этом кинетическая энергия расходуется на преодоление всех видов сопротивлений движению. Поэтому скорость электродвигателя через промежуток времени, в течение которого будет израсходована вся кинетическая энергия, становится равной нулю.

Такая остановка электродвигателя при движении по инерции называется свободным выбегом. Многие электродвигатели, работающие в продолжительном режиме или со значительными нагрузками, останавливают путем свободного выбега.

Более грубой и универсальной защитой, обязательной по правилам эксплуатации и обычно достаточной при правильно подобранных параметрах, является установка трёхфазных автоматических выключателей (по одному на двигатель), которые отключают питание в случае длительного (до несколько минут) превышения номинального тока по любой из фаз, что является следствием перегрузки двигателя, перекоса или обрыва фаз.

Особенности конструкции

Общепромышленные трехфазные асинхронные электродвигатели в независимости от подаваемой мощности имеют довольно компактную форму, что позволяет им быть установленными агрегатах или помещениях разнообразной направленности. Если это небольшие модели, то они монтируются в любое срытое от посторонних глаз место, т.е. вы избавитесь от проблем, думая о неправильной или неудобной планировке.

В зависимости от модели двигателя они могут комплектоваться в корпус из чугуна, силуминового сплава, алюминия и других материалов повышенной прочности. Также двигатель покрывают защитным слоем лака или полимерной краски, которые предназначены предохранить корпус от коррозийных образований и преждевременного изнашивания. Внутренняя начинка производится из меди, что также не дает мотору выходить из строя или подвергаться незапланированным механическим повреждениям.

Главные преимущества асинхронных электродвигателей

  • Двигатели данного исполнения могут выдерживать перегрузки в течении короткого времени;
  • Простота запуска и дальнейшей эксплуатации;
  • Прочная и компактная конструкция;
  • В разных видах нагрузках двигатели сохраняют одинаковую скорость;
  • Высокий уровень КПД до 75%;
  • Применение подшипников, с целью снижения уровня шума;
  • Степень защиты IP54 для предотвращения попадания внутрь электродвигателя воды и пыли;
  • Сниженный уровень cosφ (до 0,86) — реактивных токов, что привело к снижению риска в случае перенапряжения сети;
  • В случае незапланированных перегрузок от кратности пускового момента, двигатель всё сохранит высокий уровень эксплуатационной надежности.

Поэтому, для получения высоких технологических характеристик вам необходимо позаботиться о наличие асинхронного электродвигателя, который покажет высокую продуктивность и сможет гарантировать длительный срок эксплуатации.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector