Avtonova37.ru

Авто мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Время пуска асинхронного двигателя на холостом ходу

Время пуска асинхронного двигателя на холостом ходу

Если говорить простым языком, то синхронным называют электродвигатель, у которого скорость вращения ротора (вала) совпадает со скоростью вращения магнитного поля статора.

Кратко рассмотрим принцип действия такого электродвигателя — он основан на взаимодействии вращающегося магнитного поля статора, которое обычно создаётся трёхфазным переменным током и постоянного магнитного поля ротора.

Постоянное магнитное поле ротора создаётся за счет обмотки возбуждения или постоянных магнитов. Ток в обмотках статора создаёт вращающееся магнитное поле, тогда как ротор в рабочем режиме представляет собой постоянный магнит, его полюса устремляются к противоположным полюсам магнитного поля статора. В результате ротор вращается синхронно с полем статора, что и является его основной особенностью.

Напомним, что у асинхронного электродвигателя скорость вращения МП статора и скорость вращения ротора отличаются на величину скольжения, а его механическая характеристика «горбатая» с пиком при критическом скольжении (ниже его номинальной скорости вращения).

Скорость, с которой вращается магнитное поле статора, может быть вычислена по следующему уравнению:

f – частота тока в обмотке, Гц, p – количество пар полюсов.

Соответственно по этой же формуле определяется скорость вращения вала синхронного двигателя.

Большинство электродвигателей переменного тока, используемых на производстве, выполнены без постоянных магнитов, а с обмоткой возбуждения, тогда как маломощные синхронные двигатели переменного тока выполняются с постоянными магнитами на роторе.

Ток к обмотке возбуждения подводится за счет колец и щеточного узла. В отличие от коллекторного электродвигателя, где для передачи тока вращающейся катушке используется коллектор (набор продольно расположенных пластин), на синхронном установлены кольца поперек одного из концов статора.

Источником постоянного тока возбуждения в настоящее время являются тиристорные возбудители, часто называемые «ВТЕ» (по названию одной из серий таких устройств отечественного производства). Ранее использовалась система возбуждения «генератор-двигатель», когда на одном валу с двигателем устанавливали генератор (он же возбудитель), который через резисторы подавал ток в обмотку возбуждения.

Ротор почти всех синхронных двигателей постоянного тока выполняется без обмотки возбуждения, а с постоянными магнитами, они хоть и похожи по принципу действия на СД переменного тока, но по способу подключения и управления ими очень сильно отличаются от классических трёхфазных машин.

Одной из основных характеристик электродвигателя является механическая характеристика. Она у синхронных электродвигателей приближена к прямой горизонтальной линии. Это значит, что нагрузка на валу не влияет на его обороты (пока не достигнет какой-то критической величины).

Это достигается именно благодаря возбуждению постоянным током, поэтому синхронный электродвигатель отлично поддерживает постоянные обороты при изменяющихся нагрузках, перегрузках и при просадках напряжения (до определенного предела).

Читать еще:  Чем проверить давление в двигателе ваз 2107

Ниже вы видите условное обозначение на схеме синхронной машины.

Прямой пуск

Это наиболее популярный способ включения асинхронного электрического двигателя. Требуется всего одно действие – включение мотора в электросеть на зафиксированной частоте и номинальном напряжении тока. После прямого запуска электромотор начинает набирать обороты с высокой скоростью. Главное достоинство этой схемы – выгода с экономической точки зрения. Прямой пуск можно выполнять без использования иных устройств, на установку которых нужны дополнительные средства. Есть у этого типа запуска и недостатки.

Прямой пуск подходит исключительно для маломощных моторов, т. к. их пусковые токи не настолько большие, как у более мощных собратьев (моторов, приводов и т.д.). Тем не менее, даже эти токи оказывают большую нагрузку на электрическую сеть, ведь они могут в 10 и более раз превышать номинальные, что негативно сказывается на кабелях, питающих мотор, и на электросети в целом. Высокие токи плохо влияют и на обмотку самого мотора

Пуск с понижением напряжения

Подходит для запуска электродвигателя высокой мощности, но так же оптимален для аналогов средней, если напряжение в рабочей сети не позволяем разогнать мотор с помощью прямого пуска.

Для понижения напряжения существует три способа:

  1. Переключение намоток статора с треугольника (нормальная схема) на звезду (пусковая схема). Запуск начинается со звезды, а при достижении номинальной частоты происходит переключение на треугольник. При этом напряжение, питающее фазы статорных обмоток, падает в 1,73 раз. Это позволяет уменьшиться во столько же раз фазным токам, а линейные сокращаются втрое.
  2. Запуск с добавочным сопротивлением, приводящим к падению вольтажа на статорной обмотке (рисунок а). На момент пуска в электроцепь включают реакторы или резисторы (реактивное и активное сопротивление соответственно).
  3. Пуск с подключением через трансформатор понижающего типа с несколькими автоматически переключаемыми ступенями (рисунок б).

Главное преимущество – возможность разгона двигателя почти при том же напряжении, которое необходимо для нормальной работы. К недостаткам относится лишь падение Мп и Ммакс (максимальный момент). Эти величины прямо пропорционально зависят от напряжения: чем меньше Вольт, тем меньше моменты. Поэтому с нагрузкой мотор не запустится.

Системы возбуждения

До недавнего времени, для возбуждения применялся генератор независимого возбуждения. Он располагался на одном валу с синхронным электродвигателем. Такая схема еще применяется на некоторых предприятиях, но она устарела и теперь не применяется. Сейчас для регулировки возбуждения используются тиристорные возбудители ВТЕ.

  • оптимальный режим пуска синхронного двигателя;
  • поддержание заданного тока возбуждения в заданных пределах;
  • автоматическое регулирование напряжения возбуждения в зависимости от нагрузки;
  • ограничение максимального и минимального тока возбуждения;
  • мгновенное увеличение тока возбуждения при понижении питающего напряжения;
  • гашение поля ротора при отключении от питающей сети;
  • контроль состояния изоляции, с оповещением о неисправности;
  • обеспечивают проверку состояния обмотки возбуждения при неработающем электродвигателе;
  • работают с высоковольтным преобразователем частоты, обеспечивая асинхронный и синхронный запуск.
Читать еще:  Что заливают в двигатель чтобы не дымил

Эти устройства отличаются высокой надежностью. Основным недостатком является высокая цена.

В заключение отметим, что самый распространенный способ пуска синхронных двигателей — это асинхронный запуск. Практически не нашел применения пуск с помощью дополнительного электродвигателя. В то же время частотный запуск, который позволяет в автоматическом режиме решить проблемы пуска, довольно дорогостоящий.

Регулятор оборотов мощности

Принципы работы

Регулятор оборотов электродвигателя 220 В без потери мощности используется для поддержки первоначальной заданной частоты оборотов вала. Это один из основных принципов данного прибора, который называется частотным регулятором.

С помощью него электроприбор работает в установленной частоте оборотов двигателя и не снижает ее. Также регулятор скорости двигателя влияет на охлаждение и вентиляцию мотора. C помощью мощности устанавливается скорость, которую можно как поднять, так и снизить.

Вопросом о том, как уменьшить обороты электродвигателя 220 В, задавались многие люди. Но данная процедура довольно проста. Стоит только изменить частоту питающего напряжения, что существенно снизит производительность вала мотора. Также можно изменить питание двигателя, задействуя при этом его катушки. Управление электричеством тесно связано с магнитным полем и скольжением электродвигателя. Для таких действий используют в основном автотрансформатор, бытовые регуляторы, которые уменьшают обороты данного механизма. Но стоит также помнить о том, что будет уменьшаться мощность двигателя.

Способы пуска асинхронного двигателя

Трехфазный асинхронный двигатель (АД) является основной электрической


машиной, применяемой на производстве в настоящее время. В первую очередь, это связано с его низкой ценой, надежностью и простотой.

Существует несколько способов запуска АД.

Первый способ – прямой пуск. Пуск двигателя осуществляется напрямую, подачей питания на обмотку статора. Этот способ наиболее экономичный, так как не требует дополнительных устройств для запуска. Но, чаще всего такой способ применяется для маломощных двигателей, так как пусковые моменты и токи при таком способе достигают больших значений и способны повредить не только сам двигатель, но и механические привода соединенные с ним.

Другой способ — это способ пуска с добавочным сопротивлением в цепи статора, так называемый реостатный способ. В начальный момент времени в цепи статора находятся реостаты, при подаче напряжения питания, часть напряжения падает на них. Поэтому двигатель запускается на пониженном напряжении, следовательно, пусковые токи и момент уменьшаются до умеренных значений. Недостатком такого способа является низкий пусковой момент, в связи с чем не рекомендуется использовать этот способ при пуске под нагрузкой.

Читать еще:  Что будет если в бензиновый двигатель залить компрессорное масло

Способ пуска асинхронного двигателя переключением со звезды на треугольник, применяется в установках, где нагрузка на валу минимальна или вообще отсутствует. Для того чтобы осуществить данный вид пуска, нужно чтобы основной схемой включения двигателя был треугольник. В начальный момент времени обмотка соединяется по схеме звезда, запускается, происходит разгон до некоторого значения, а затем переключают на треугольник. Таким образом, добиваются уменьшения токов в момент пуска. Но, с уменьшением токов, уменьшаются и моменты, именно поэтому не рекомендуется использовать этот способ для двигателя с нагрузкой на валу.

Еще одним способом пуска является плавный пуск асинхронного двигателя. В этом случае к статорной обмотке подключают устройство плавного пуска (УПП), или софт-стартер. С помощью устройства плавного пуска, можно запускать и останавливать двигатель без рывков. Кроме того, в зависимости от комплектации УПП в нем могут присутствовать функции регулировки и защиты. Разумеется, такой способ пуска является наиболее лучшим для самой машины и производственных механизмов, потому что он продлевает срок службы. Но и стоимость такого устройства колеблется в широких пределах и зачастую может превышать стоимость самого двигателя.

3.2.10. Способы пуска асинхронного двигателя

Проблемы пуска:

большой пусковой ток, малый пусковой момент.

Двигатели постоянного тока

Кроме машин переменного напряжения есть электродвигатели, подключающиеся к сети постоянного тока. Число оборотов таких устройств рассчитывается по совершенно другим формулам.

Номинальная скорость вращения

Число оборотов аппарата постоянного тока рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • U – напряжение сети,
  • Rя и Iя – сопротивление и ток якоря,
  • Ce – константа двигателя (зависит от типа электромашины),
  • Ф – магнитное поле статора.

Эти данные соответствуют номинальным значениям параметров электромашины, напряжению на обмотке возбуждения и якоре или вращательному моменту на валу двигателя. Их изменение позволяет регулировать частоту вращения. Определить магнитный поток в реальном двигателе очень сложно, поэтому для расчетов пользуются силой тока, протекающего через обмотку возбуждения или напряжения на якоре.

Формула расчёта числа оборотов двигателя постоянного тока

Число оборотов коллекторных электродвигателей переменного тока можно найти по той же формуле.

Регулировка скорости

Регулировка скорости электродвигателя, работающего от сети постоянного тока, возможна в широких пределах. Она возможна в двух диапазонах:

  1. Вверх от номинальной. Для этого уменьшается магнитный поток при помощи добавочных сопротивлений или регулятора напряжения;
  2. Вниз от номинальной. Для этого необходимо уменьшить напряжение на якоре электромотора или включить последовательно с ним сопротивление. Кроме снижения числа оборотов это делается при запуске электродвигателя.

Знание того, по каким формулам вычисляется скорость вращения электродвигателя, необходимо при проектировании и наладке оборудования.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector