Avtonova37.ru

Авто мастер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Все чертежи и схемы о магнитных двигателях

В настоящее время магнитного двигателя до сих пор не создано, однако существует множество правдоподобных теорий, мифов, устройств даже вполне серьезных научных работ посвященных тематике магнитного двигателя.

Сначала надо понять, что из себя должен представлять магнитный двигатель в целом. Почему так много людей занимающихся разработкой магнитного двигателя видят в нем будущее?

Обычный электромотор – это не магнитный двигатель. Это устройство которое использует магнитные свойства материалов, но все таки движется за счет электрического тока.

Настоящий магнитный двигатель работает исключительно на магнитах, используя их постоянную энергию для перемещения своих механизмов.

Прообраз магнитного двигателя можно встретить в каждом втором офисе ввиде всевозможных качающихся и крутящихся сувениров – там тоже используется сила постоянных магнитов для поддержания “вечности” движения. Однако и батарейки там тоже есть.

Главной проблемой всевозможных устройств основанных на постоянных магнитах является то, что магниты склонны к статическому положению равновесия. Если привинтить рядом два сильных магнита они будут находиться в движении ровно до того момента, пока не будет достигнуто максимально возможное притяжении на минимально возможном расстоянии между полюсами. Они просто повернутся друг к другу.

Поэтому все изобреатели магнитных двигателей стараются либо сделать притяжения магнитов переменным за счет механики самого двигателя, либо прибегают к экранированию.

Мы нашли несколько работающих примеров магнитных двигателей.

V-Gate

Самый интересный из всех настольных вариантов магнитных двигателей. Работает за счет создания переменности расстояний от ротора с статору.

Принцип действия

Рабочий двигатель

Magnetic Air Car

Разработка концепт-кара с магнитно-воздушным двигателем под руководством Гая Негре происходит во франции. Небольшой но мощный компрессор запускается помощью батареи (аккумулятора). Компрессор накачивает воздух в баллоны, после чего он используется для передвижения автомобиля. Параллельно заряжается и аккумулятор автомобиля.
Существует по меньшей мере один полностью рабочий прототип автомобиля использующего этот магнитный двигатель.

Магнитный двигатель Муаммера Ийлдиза.

Еще один образец работающего магнитного двигателя.


На многих видео в сети, отчетливо видно, что двигатель уверенно запускается и хорошо крутится. Один из них даже приводит в движение мини-карт. На него получен патент, однако конструкция была проверена некими специалистами, которые заявляют, что это фальшивый магнитный двигатель, и, вероятнее всего в объемном корпусе двигателя на презентациях спрятаны батареи.

MotorMagnetico

Или “желтая коробочка неизвестно с чем”. Поскольку это не англоязычная разработка, можем только предоставить вам видео, на котором этот магнитный двигатель питает двухкиловаттный прожектор.

Shinyeon Magnet and Wind Systems

Корейская разработка ветрогенератора, усиленного магнитным двигателем. После запуска не требует дополнительных энергетических затрат и производит около 1 кВч энергии. Разработка получила множество наград и сейчас это открытый коммерческий проект.

Все эти магнитный двигатели существуют. Кроме них есть еще множество других идеи и реализаций этого вида свободной энергии. С ним вы сможете ознакомится на сайте PesWiki, посвященному свободной энергии.

Как же изготовить «Ветерок»?

Начинать изготовление двигателя надо с самой главной детали — цилиндра. Цилиндр состоит из головки, втулки, болта, слюдяных прокладок, калильной нити, гайки и клиньев.

Сама головка изготовляется из материала Д16Т диаметром 20 мм. Пруток зажимается в кулачковый патрон, и производится полная обработка по чертежу той стороны прутка, где должна быть сферическая выемка. Далее сверлятся отверстия диаметром 4 и 22 мм. Сферическая выемка полируется пастой ГОИ. Затем деталь отрезается от заготовки. Обратная сторона детали обрабатывается в специальной оправке, которая зажимается в кулачковый патрон станка. Затем размечаются и сверлятся отверстия под винты крепления к цилиндру.

Болт точится из стали У5 по чертежу. В головке болта высверливается глухое отверстие диаметром 0,6 мм под медный клин для заделки калильной нити.

Это отверстие сверлится под углом к телу болта. Гайка и втулка точатся соответственно из латуни и дюралюминия Д16Т по чертежу.

Калильные нити можно делать из платиновой, родиевой или иридиевой проволоки. Возможно использование проволоки от старых термопар нагревательных термических печей, причем их необходимо калибровать фильерами.

Фильер представляет собой пластинку из нержавеющей нагартованной стали (или из стали У8) толщиной 0,3 мм. В этой пластинке нужно пробить отверстие обломанной иглой с помощью молотка. Иглу держите плоскогубцами. Протяжка проволоки для нити показана на рисунке 3 в.

Нить наматывается в спираль на оправке диаметром 1 мм. Шаг намотки 0,6-0,7 мм.

Особенно хорошо работают спирали, свитые из двойной или тройной проволочки платины толщиной 0,05 мм

Типовые схемы управления ад с короткозамкнутым ротором

Это поможет вовремя выявить и устранить ошибку до выхода из строя самого прибора.

Интенсивность динамического торможения регулируется резистором Rт, с помощью которого устанавливается необходимый постоянный ток в статоре двигателя.

На всех бытовых приборах, от соковыжималки до шлифовальной машины, установлены механизмы этого типа.

Для того, чтобы после подключения к сети мотор заработал, нужен стартовый толчок. Во время отпускания пусковой кнопки, электромотор из двухфазного режима переходит в однофазный, и его работа поддерживается соответствующей компонентой переменного магнитного поля.

Подключение электромотора с пусковым сопротивлением: Вспомогательная обмотка таких устройств имеет повышенное активное сопротивление. Положительные черты: отсутствие постоянных магнитов снимает проблему их выхода из строя с течением времени; высокий момент силы на низкой частоте вращения; простое и динамичное управление. Для питания бытовых приборов и электродвигателей применяется подключение к однофазной сети с напряжением в В.


Ниже перечислены дефекты, которые сигнализируют о возможных проблемах с двигателем, их причиной могла стать неправильная эксплуатация или перегрузка: Сломанная опора или монтажные щели. Чтобы проверить работоспособность двигателя, следует включить его сначала на 1 минуту, а затем дать поработать около 15 минут. Схема управления асинхронным двигателем с использованием магнитного пускателя рис. После нажатия кнопки SB1 пускатель КМ1 приходит в действие, подавая электроток в цепь статора с включенным сопротивлением. В данной схеме нажатием кнопки реверса меняется чередование фаз питающего напряжения на статоре двигателя, что будет вызывать смену направленности его вращения реверсом.

Это приводит к включению контактора торможения КМ1, подаче в обмотки статора постоянного тока от выпрямителя V через резистор Rт и переводу двигателя в режим динамического торможения. Они удовлетворяют большинству требований к электроприводу станков. Схема обеспечивает прямой без ограничения тока и момента пуск двигателя, отключение его от сети, а также защиту от коротких замыканий предохранители FА и перегрузки тепловые реле КК. Ниже перечислены дефекты, которые сигнализируют о возможных проблемах с двигателем, их причиной могла стать неправильная эксплуатация или перегрузка: Сломанная опора или монтажные щели.

Схема управления АД с использованием реверсивного магнитного пускателя В схеме предусмотрена защита от перегрузок двигателя реле КК и коротких замыканий в цепи статора автоматический выключатель QF и управления предохранители FА. Однофазные варианты электродвигателей намного проще и не столь критичны, если допущены ошибки в определении полярности или емкости конденсатора. Начало вращения в асинхронных двигателях с трехфазной обмоткой статора происходит автоматически, благодаря чередованию фаз Как видно на структурной схеме, в коллекторном электродвигателе имеются рабочая и пусковая обмотки. Модели различаются между собой по мощности, частоте вращения, высоте оси вращения, КПД.
Тепловая защита электродвигателя. Электротепловое реле

Читать еще:  Volvo 940 какое масло заливать в двигатель

Состав проекта

Содержание

1 Выбор дополнительных исходных данных

1.1 Выбор конструктивных параметров

1.2 Выбор параметров топлива

1.3 Определение начальных параметров ТВС

1.4 Выбор параметров индикаторной диаграммы

2 Расчет рабочего цикла

2.1 Процесс впуска

2.2 Процесс сжатия

2.3 Процесс сгорания

2.4 Процессы расширения и выпуска

2.5 Индикаторные показатели двигателя

2.6 Эффективные показатели двигателя

2.7 Построение индикаторной диаграммы

3 Расчет динамики двигателя

3.1 Определение параметров расчетной модели

3.2 Расчет сил, действующих между деталями КШМ

3.3 Построение полярной диаграммы сил S и rшш

3.4 Определение индикаторного момента двигателя

3.5 Уравновешивание двигателя

4 Конструкция и расчет основных узлов и систем

4.1 Поршневая группа

4.1.1 Конструкция деталей поршневой группы

4.1.2. Расчет деталей поршневой группы

4.2 Шатунная группа

4.2.1 Конструкция деталей шатунной группы

4.2.2 Расчет деталей шатунной группы

4.3 Группа коленчатого вала

4.3.1 Конструкция деталей группы коленвала

4.3.2 Расчет деталей группы коленвала

4.4 Корпусные детали

4.4.1 Конструкция корпусных деталей

4.4.2 Расчет корпусных деталей

4.5 Газораспределительный механизм

4.5.1 Конструкция ГРМ

4.5.2 Расчет деталей ГРМ

4.6 Система смазки

4.7 Система охлаждения

5 Технико-экономическая оценка спроектированного двигателя

5.1 Построение ВСХ двигателя

5.2 Выбор параметров для определения качества двигателя

5.3 Анализ показателей спроектированного двигателя

Список использованных источников

Ведомость проекта (19060165.ДР16КП.00000ВП)

Введение

В данном курсовом проекте проектируется двигатель легкового автомобиля малого класса с принудительным зажиганием. Номинальная мощность проектируемого двигателя 52 кВт при частоте вращения коленчатого вала 5100 об/мин. Дополнительным требованием является легкий пуск при низких температурах (ЛПНТ).

1.2 Выбор параметров топлива

Средний элементарный состав и молекулярная масса топлива (бензин АИ92): С=0,855, Н=0,145 и μт=120 кг/кмоль. Низшая теплота сгорания бензина составляет Нu=44000 кДж/кг.

1.3 Определение начальных параметров ТВС

Так как проектируемый двигатель будет работать без наддува, то в цилиндр воздух поступает из атмосферы. В этом случае при расчете рабочего цикла двигателя давление на впуске принимается равным P0 = 0,1 МПа, а температура Т0 = 293 К.

Коэффициент избытка воздуха устанавливается на основании следующих соображений. На современных двигателях устанавливают многокамерные карбюраторы, обеспечивающие получение почти идеального состава смеси по скоростной характеристике. Возможность применения для рассчитываемого двигателя карбюратора с обогатительной системой и системой холостого хода позволяет получить при соответствующей регулировке как мощностной, так и экономичный состав смеси. Значение коэффициента избытка воздуха α для бензиновых двигателей [1, с.21] находится в пределах 0,80…0,96. Выбираю для проектируемого двигателя α=0,96.

3.5 Уравновешивание двигателя

Рассчитываемый четырехцилиндровый однорядный двигатель имеет порядок работы 1-2-4-3, промежутки между вспышками равные 180˚ и коленчатый вал с кривошипами, расположенными под углом 180˚.

Силы инерции первого порядка и их моменты при указанном расположении кривошипов взаимно уравновешиваются: ΣРJ1=0 и ΣМJ1=0. Силы инерции второго порядка для всех цилиндров равны и направлены в одну сторону. Их равнодействующая ΣРJП=4РJП=4mJR .

Силы инерции второго порядка можно уравновесить лишь с помощью дополнительных валов. Суммарный момент этих сил равен нулю: ΣМJII=0. Центробежные силы инерции для всех цилиндров равны и направлены попарно в разные стороны. Равнодействующая этих сил и момент равны нулю: ΣКR=0 и ΣМR=0.

4.2 Шатунная группа

4.2.1 Конструкция деталей шатунной группы

Для проектируемого двигателя, шатун изготавливаем из высококачественной углеродистой стали 45Г2 (ГОСТ 454371) путем штамповки. Так как поршневой палец плавающего типа, то в верхней головке шатуна запрессована тонкостенная втулка, изготовленная из бронзы БР ОЦС 4-4-2,5 (ГОСТ 501774). Для смазывания поршневого пальца в стенке поршневой головки шатуна предусмотрено отверстие (см. рис. 4.8). Стержень шатуна имеет двутавровое сечение, что обеспечивает большую жесткость. Кривошипная головка шатуна выполнена разъемной, с плоскостью разъема перпендикулярной оси шатуна. Крепление кромки кривошипной головки шатуна осуществляется двумя болтами.

Болты изготовлены из легированной стали 40Х, потому что они подвергаются действию ударных нагрузок сил инерции. Гайки болтов изготовлены из того же материала, а для повышения твердости прочности подвергаются термической обработке.

В кривошипной головке шатуна установлены тонкостенные вкладыши, в качестве антифрикционного слоя применим высококачественный баббит БК2 на свинцовой основе.

Чтобы при сборке не перепутать крышки шатунов, на шатуне и соответствующей ему крышке (сбоку) имеется клеймо номера цилиндра, в которой они устанавливаются. При сборке цифры на шатуне и крышке должны находится с одной стороны.

Там, где нижняя головка шатуна переходит в стержень, имеется отверстие, по которому проходит масло, смазывающее стенки цилиндра. На рисунке 4.6 приведена схема шатуна.

4.3 Группа коленчатого вала

4.3.1 Конструкция деталей группы коленчатого вала

Коленчатый вал – наиболее сложная в конструктивном отношении и наиболее напряженная деталь двигателя, воспринимающая периодические нагрузки от сил давления газов, сил инерции и их моментов.

Коленчатый вал рассчитываемого двигателя выполнен из высокопрочного чугуна ВЧ 60 – 2 (ГОСТ 729370) полноопорным, т.е. с опорами после каждого цилиндра. Вал статически и динамически уравновешен. Поверхности шеек в целях повышения их твёрдости и износостойкости обрабатываются ТВЧ. Угол между кривошипами составляет 1800. Все поверхности скольжения колен вала имеют высокую чистоту, которая достигается суперфинишной обработкой – полированием после шлифования. Вал вращается в коренных подшипниках скольжения. Для обеспечения смазывания трущихся поверхностей коренных и шатунных подшипников, в коленчатом вале предусмотрены масляные каналы. Масло к коренным шейкам подводится от общей магистрали по каналам в стенках верхней половины картера со стороны малонагруженной половины вкладыша подшипника. От коренных шеек оно подводится к шатунным шейкам по просверленным валу каналам. Осевая фиксация колен вала при его тепловом расширении относительно картера осуществляется упорными кольцами и полукольцами.

4.5 Газораспределительный механизм

4.5.1 Конструкция ГРМ

К механизму газораспределения относятся: распределительный вал, шестерня его привода, стакан, впускной и выпускной клапаны, пружины клапанов, направляющие втулки.

Механизм газораспределения верхнеклапанный с верхним расположением распределительного вала.

Распределительный вал – стальной кованый, имеет пять опорных шеек. Шейки опираются на запрессованные в блоки втулки из малоуглеродистой ленты, залитой баббитом. Профили впускного и выпускного кулачков вала одинаковые.

Для повышения износостойкости кулачки, опорные шейки, эксцентрик привода топливного насоса и шестерня привода масляного насоса, выполненные как одно целое с валом, подвергнуты поверхностной закалке.

Распределительный вал приводится во вращение от коленчатого вала шестернями с косыми зубьями. На коленчатый вал насажана шестерня, а на распределительный для обеспечения бесшумной работы – текстолитовая с чугунной ступицей. Обе шестерни имеют по два резьбовых отверстия для съемника. Правильность фаз распределения обеспечивается установкой шестерни по меткам, которые совмещаются с риской у впадины зуба на текстолитовой шестерне. Стаканы одинаковые для всех клапанов, стальные.

Выбираем схему с двумя клапанами: впускным и выпускным. Клапаны изготовлены из жаропрочных сталей: впускной клапан – из хромокремнистой, а выпускной – из хромникельмарганцовистой с присадкой азота. На рабочую фаску выпускного клапана дополнительно наплавлен более жаростойкий хромникелевый сплав.

Читать еще:  Что за обмотка при подключении двигателя 380 на 220

Впускной клапан открывается за 17º до в.м.т. и закрывается 43º после н.м.т. Выпускной клапан открывается за 47º до н.м.т. и закрывается 13º после в.м.т. указанные фазы действительны при зазоре между коромыслами и клапанами, равном 0,35 мм. Зазоры проверяют и устанавливают на холодном (20º С) двигателе. При увеличенных зазорах возникает стук клапанов, а при уменьшении возможно неплотное прилегание клапана к седлу и прогорание клапана. Клапаны работают в металлокерамических направляющих втулках, которые изготовлены прессованием с последующим спеканием смеси из железного, медного и графитового порошков и обработаны окончательно после запрессовки в головку. Антифрикционные качества таких втулок высоки. Для уменьшения количества масла, просасываемого через зазоры между втулкой и стержнем впускного клапана в цилиндр, на стержень клапана под тарелкой пружины надет маслоотражательный колпачок, изготовленный из маслостойкой резины.

4.6 Система смазки

Система смазки служит для подачи масла ко всем трущимся поверхностям деталей двигателя при его работе, вследствие чего снижаются потери мощности на трение между деталями, и уменьшается износ трущихся поверхностей. Кроме того, масло, проходя между трущимися деталями двигателя, охлаждает их и уносит продукты износа.

Система смазки двигателя комбинированная: под давлением и разбрызгиванием. Под давлением смазываются коренные и шатунные подшипники, опоры распределительного вала, втулки шестерни. Маслом, вытекающим из зазоров и разбрызгиваемым движущимися деталями, смазываются стенки цилиндров, поршни с поршневыми кольцами, поршневые пальцы в бобышках поршня и стержни клапанов в их направляющих втулках.

В систему смазки входят: масляный насос, приемный патрубок с фильтрующей сеткой, прикрепленный к корпусу насоса, полнопоточный масляный фильтр, установленный на левой передней стороне двигателя; редукционный клапан давления масла, встроенный в приемный патрубок, датчики указателя и контрольной лампы давления масла. Масляный насос, приводится в движение парой шестерен с винтовыми зубьями. К центральной опоре распределительного вала масло подводится по каналам, просверленным в блоке цилиндров, в головке цилиндров и в корпусе подшипников распределительного вала. В прокладке головки цилиндров имеется окантованное медью отверстие, по которому масло проходит из канала блока в канал головки. В каждом вкладыше первого, второго, четвертого и пятого коренных подшипников имеется по два отверстия, через которые масло попадает в кольцевые канавки на внутренних поверхностях вкладышей. Из канавок часть масла идет на смазывание коренных подшипников, а другая часть по каналам, просверленным в шейках и щеках коленчатого вала, к шатунным подшипникам, и от них через отверстия в нижних головках шатунов струя масла попадает на зеркало цилиндров. Масло, прошедшее к центральной опоре распределительного вала через кольцевую выточку в опорной шейке, попадает в магистральный канал распределительного вала, а из канала через отверстия в кулачках и опорных шейках к рабочим поверхностям кулачков, рычагов и опор вала. Остальные детали смазываются разбрызгиванием и самотеком.

Масляный насос шестеренчатого типа, установлен внутри картера и крепится к блоку цилиндров двумя болтами. Ведущая шестерня насоса закреплена на валике неподвижно, а ведомая шестерня свободно вращается на оси, запрессованной в корпус насоса. Масло поступает в насос по маслоприемному патрубку, пройдя фильтрующую сетку. В корпус маслоприемного патрубка встроен редукционный клапан. При повышении давления в системе смазки выше допустимого масло отжимает редукционный клапан, и избыточное масло перепускается из полости давления в полость маслоприемника. Давление, при котором срабатывает редукционный клапан, обеспечивается пружиной соответствующей упругости.

Масляный фильтр навернут на штуцер и прижат к кольцевому буртику на блоке цилиндров. Герметичность соединения обеспечивается резиновой прокладкой, установленной между крышкой фильтра и буртиком блока. Фильтр имеет противодренажный клапан, предотвращающий отекание масла из системы при остановке двигателя, и перепускной клапан, который срабатывает при засорении фильтрующего элемента и перепускает масло помимо фильтра в магистральный канал. Фильтрация масла производится бумажным элементом.

Для смазки проектируемого двигателя будем использовать моторное всесезонное масло марки М5з/10Г1 либо М6з/12Г1.

Уровень масла определяется с помощью маслоизмерительного щупа.

4.7 Cистема охлаждения

Система охлаждения двигателя воздушного типа. Система охлаждения состоит из следующих элементов: ребра охлаждения на головках блока и на наружной части гильз цилиндров; вентилятор для подачи воздуха; кожух для направления потока воздуха от вентилятора к головкам и блоку.

Вентилятор четырехлопастной. Лопасти вентилятора имеют переменный по радиусу угол установки и для уменьшения шума переменный шаг по ступице. Вентилятор устанавливается на ступицу, напрессованную на шкив коленвала.

Для большей эффективности охлаждения в головках блока предусмотрены полости, предназначенные и для линейного расширения металла.

Заключение

Данный курсовой проект следует рассматривать как первый этап по разработке карбюраторного двигателя, то есть считать его эскизным проектом, который включает в себя только предварительные расчеты и компоновку чертежа.

В результате проделанной работы были рассчитаны индикаторные параметры рабочего цикла двигателя. По этим результатам была построена индикаторная диаграмма тепловых характеристик.

Расчеты динамических показателей дали размеры поршня, в частности его диаметр и ход, радиус кривошипа, были построены графики составляющих сил, а также график суммарных набегающих тангенциальных сил и суммарных набегающих крутящих моментов.

Конечным результатом расчётов стало конструирование деталей двигателя. По полученным размерам приводится чертеж формата А1, на котором изображен поперечный разрез двигателя.

Магнитно-барабанные сепараторы

Магнитно-барабанные сепараторы автоматически и непрерывно отделяют большое количество ферромагнитных частиц из потоков сыпучих материалов. Барабаны некоторых типов даже отделяют слабомагнитные частицы.

  • Для крупнозернистых продуктов и объемных потоков
  • Высокая производительность (до 550 м³/ч)
  • Подходит для острых или абразивных частиц
  • Магнитный сегмент внутри вращающегося барабана
  • Регулируемое магнитное поле

Магнитно-барабанные сепараторы

Магнитно-барабанный сепаратор представляет собой неподвижный магнитный сегмент, вокруг которого вращается оболочка из нержавеющей стали с клеммами. Поток продукта падает сверху на барабан, а магнит притягивает ферромагнитные металлические частицы, содержащиеся в продукте. Клеммы, расположенные на барабане, выталкивают захваченные металлические частицы в нижнюю часть сепаратора за пределы зоны действия магнитного поля. Там притянутые частицы отделяются и могут быть собраны и/или удалены. Для этой цели зачастую применяется разделительная пластина.

Благодаря использованию различных магнитных систем возможно удаление как ферромагнитных («сильномагнитных»), так и слабомагнитных частиц.

Вспомогательные магнитно-барабанные сепараторы

  • Высокая производительность (до 550 м³/ч)
  • Różne wymiary i typy kołnierza
  • С ферритовыми или неодимовыми магнитами
  • Для ленты шириной 600–2000 мм
  • Подходит для острых или абразивных частиц

Магнитно-барабанные сепараторы устанавливаются после вибропитателя или встраиваются в корпус. Для отделения сильномагнитных и слабомагнитных частиц предлагаются магниты различной мощности.

Магнитно-барабанные сепараторы устанавливаются после вибропитателя или встраиваются в корпус. Для отделения сильномагнитных и слабомагнитных частиц предлагаются магниты различной мощности.

Барабанные магнитные в корпусе, базовый тип

  • Для переработки или отделения металлов
  • Производительность до 300 м³/ч
  • Регулируемое магнитное поле
  • Непрерывная автоматическая очистка
  • Ферритовые/неодимовые магниты (3000 Гс на поверхности)

Магнитно-барабанный сепаратор в корпусе. Полнокомплектная система с приводом и регулируемой разделительной пластиной.

Магнитно-барабанный сепаратор в корпусе. Полнокомплектная система с приводом и регулируемой разделительной пластиной.

Барабанные сепараторы на постоянных магнитах для переработки лома

  • Подходит для острых или абразивных частиц
  • Непереключаемый (постоянный) магнит
  • Автоматическая очистка (непрерывная)
  • Захват ферромагнитных частиц на расстоянии от 1 — 250 мм
  • Для ленты шириной 1000-2000 мм
Читать еще:  Автозапуск томагавк 9010 отключается после запуска двигателя причины

Барабанный сепаратор на перманентных магнитах для крупных и острых ферромагнитных частиц. Может использоваться в качестве системы с подачей снизу или сверху.

Барабанный сепаратор на перманентных магнитах для крупных и острых ферромагнитных частиц. Может использоваться в качестве системы с подачей снизу или сверху.

Барабанные электромагнитные сепараторы для переработки лома

  • Переключаемый (электромагнит)
  • Для ленты шириной 1000-2000 мм
  • Захват ферромагнитных частиц на расстоянии от 1 — 250 мм
  • Подходит для острых или абразивных частиц
  • Автоматическая очистка (непрерывная)

Электрический магнитно-барабанный сепаратор для крупных и острых ферромагнитных частиц. Может использоваться в качестве системы с подачей снизу или сверху. Может быть отключен для проведения очистки и обслуживания.

Электрический магнитно-барабанный сепаратор для крупных и острых ферромагнитных частиц. Может использоваться в качестве системы с подачей снизу или сверху. Может быть отключен для проведения очистки и обслуживания.

Эксперт в области переработки

Эрик — один из наших экспертов в области разделения металлов. Он будет рад помочь вам.

Эрик Кюнен (Erik Kuenen)

Менеджер по международным продажам

Эрик — менеджер по продажам, более 20 лет работающий в сфере перерабатывающей промышленности.

Контактные данные: +420 318 599 550

Как сделать вечный двигатель с помощью магнитов своими руками

  • 3 вала
  • Диск из люцита диаметром 4 дюйма
  • 2 люцитовых диска диаметром 2 дюйма
  • 12 магнитов
  • Алюминиевый брусок

Валы прочно соединяются между собой. Причем один лежит горизонтально, а два другие расположены по краям. К центральному валу крепится большой диск. Остальные присоединяются к боковым. На дисках располагаются

— 8 в середине и по 4 по бокам. Алюминиевый брусок служит основанием для конструкции. Он же обеспечивает и ускорение устройства.

Недостатки ЭМД

Планируя активно использовать подобные генераторы, следует соблюдать осторожность. Дело в том, что постоянная близость магнитного поля приводит к ухудшению самочувствия. К тому же для нормального функционирования устройства необходимо обеспечить ему специальные условия работы. Например, защитить от воздействия внешних факторов. Итоговая стоимость готовых конструкций получается высокой, а вырабатываемая энергия слишком мала. Поэтому и выгода от использования подобных конструкций сомнительна.

Схема индукционного простого нагревателя мощностью 1600 Вт

Представленную схему следует рассматривать, скорее, как экспериментальный вариант. Тем не менее, этот вариант является вполне работоспособным. Главные преимущества схемы:

  • относительная простота,
  • доступность деталей,
  • лёгкость сборки.

Схема индукционного нагревателя (картинка ниже) работает по принципу «двойного полумоста», дополненного четырьмя силовыми транзисторами с изолированным затвором из серии IGBT (STGW30NC60W). Транзисторы управляются посредством микросхемы IR2153 (самостоятельно тактируемый полумостовой драйвер).

Схематически представленный упрощённый индукционный нагреватель малой мощности, конструкция которого допускает применение в условиях частных хозяйств

Двойной полумост способен обеспечить ту же мощность, что и полный мост, но тактируемый полумостовой драйвер затвора проще в исполнении и, соответственно, в применении. Мощный двойной диод типа STTH200L06TV1 (2x 120A) работает как схема антипараллельных диодов.

Гораздо меньших по мощности диодов (30А) будет вполне достаточно. Если предполагается использовать транзисторы серии IGBT со встроенными диодами (например, STGW30NC60WD), от этого варианта вполне можно отказаться.

Рабочая частота резонанса настраивается с помощью потенциометра. Наличие резонанса определяется по наиболее высокой яркости светодиодов.

Электронные компоненты простого индукционного нагревателя, создаваемого своими руками: 1 — Мощный двойной диод типа STTH200L06TV1; 2 – транзистор со встроенными диодами тип STGW30NC60WD

Конечно, всегда остаётся возможность построения более сложного драйвера. Вообще, оптимальным видится решение использовать автоматическую настройку.

Таковая, как правило, используется в схемах профессиональных индукционных нагревателей, но текущая схема, в случае такой модернизации, явно утрачивает фактор простоты.

Регулировка частоты, катушка индуктивности, мощность

Схемой индукционного нагревателя предусматривается регулировка частоты в диапазоне, примерно, 110 — 210 кГц. Однако схема управления требует вспомогательного напряжения 14-15В, получаемого от небольшого адаптера (коммутатор допускает коммутируемое исполнение или обычное).

Выход схемы индукционного нагревателя подключается к рабочей цепи катушки через согласующий дроссель L1 и трансформатор изолирующего действия. Дроссель имеет 4 витка провода на сердечнике диаметром 23 см, изолирующий трансформатор состоит из 12 витков двухжильного кабеля, намотанного на сердечнике диаметром 14 см.

Выходная мощность индукционного нагревателя с указанными параметрами составляет около 1600 Вт. Между тем не исключаются возможности наращивания мощности до более высоких значений.

Экспериментальная конструкция индукционного нагревателя, изготовленная своими руками в домашних условиях. Эффективность устройства достаточно высокая, несмотря на малую мощность

Рабочая катушка индукционного нагревателя изготовлена из проволоки диаметром 3,3 мм. Лучшим материалом исполнения катушки видится медная труба, для которой допускается применить простую систему водяного охлаждения. Катушка индуктивности имеет:

  • 6 витков намотки,
  • диаметр 24 мм,
  • высоту 23 мм.

Для этого элемента схемы характерным явлением видится существенный нагрев по мере работы установки в активном режиме. Этот момент следует учитывать, выбирая материал для изготовления.

Модуль резонансного конденсатора

Резонансный конденсатор сделан в виде батареи небольших конденсаторов (модуль собран из 23 малых конденсаторов). Общая ёмкость батареи равна 2,3 мкФ. В конструкции допускается использование конденсаторов ёмкостью 100 нФ (

275В, полипропилен МКП, класс X2).

Этот тип конденсаторов не предназначен для таких целей, как применение в схеме индукционного нагревателя. Однако, как показала практика, отмеченный тип элементов ёмкости вполне удовлетворяет работой на резонансной частоте 160 кГц. Рекомендуется использовать ЭМИ фильтр.

Фильтр электромагнитного излучения. Примерно такой рекомендуется использовать в конструкции индукционного нагревателя с целью минимизации помех

Регулируемый трансформатор допускается заменить схемой «мягкого» старта. Например, можно рекомендовать прибегнуть к использованию схемы простого ограничителя тока:

  • нагреватели,
  • галогенные лампы,
  • другие приборы,

мощностью около 1 кВт, подключаемые последовательно с индукционным нагревателем при первом включении.

Предупреждение о мерах безопасности

Изготавливая индукционный нагреватель по представленной схеме, следует помнить: контур схемы индукционного нагрева подключается к электрической сети и находится под высоким напряжением. Настоятельно рекомендуется использовать в конструкции потенциометр с изолированным стержнем.

Высокочастотное электромагнитное поле несёт вредный потенциал, способный повредить электронные устройства и носители информации. Представленная схема, учитывая простоту реализации, несёт значительные электромагнитные помехи. Этот фактор может привести к различным аварийным последствиям:

  • поражению электрическим током,
  • ожогам,
  • возгораниям.

Поэтому, прежде чем принять решение по созданию и проведению экспериментов с индукционным нагревателем, следует обеспечить полную безопасность для конечного пользователя и окружающих.

Видео: индукционный нагреватель сварочным инвертором


Представленный выше видеоролик – демонстрация работоспособности устройства по нагреву металла. Это устройство изготовлено посредством переделки сварочного инвертора, и как отмечает автор, действует вполне эффективно:

Заключительный штрих

Таким образом, сооружение индукционного нагревателя своими руками для расплавления металла в домашних условиях – это не фантастическая идея, но вполне реализуемое дело. При желании, наличии соответствующей информации, комплектующих деталей, собрать работоспособный нагреватель вполне допустимо.

При помощи информации: Danyk

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector